
- •1 Вопрос.
- •2 Вопрос.
- •Двойной интеграл в полярных координатах
- •Вычисление двойного интеграла в декартовых координатах
- •3 Вопрос.
- •4 Вопрос.
- •5 Вопрос.
- •Свойства
- •6 Вопрос.
- •7 Вопрос.
- •8 Вопрос.
- •9 Вопрос.
- •10 Вопрос
- •11 Вопрос
- •12 Вопрос
- •- (По моему легче учить из тетради по практике. Тут пизда)
- •Дифференциальные уравнения первого порядка.
- •Дифференциальные уравнения второго порядка.
- •Дифференциальные уравнения высших порядков.
- •Системы дифференциальных уравнений вида .
- •13 Вопрос
- •14 Вопрос
- •Метод решения Первый способ
- •Второй способ
- •15 Вопрос
- •16 Вопрос
- •Метод Рунге-Кутта
- •17 Вопрос
- •18 Вопрос
- •26 Вопрос
- •27 Вопрос
- •28 Вопрос
- •2. Необходимый признак сходимости.
- •29 Вопрос
- •30 Вопрос
- •31 Вопрос
- •32 Вопрос
- •33 Вопрос
- •34 Вопрос
- •35 Вопрос
- •36 Вопрос
- •37 Вопрос
- •38 Вопрос Ряды Фурье для четных и нечетных функций. Комплексная форма ряда Фурье.
37 Вопрос
Тригонометрический ряд. Выражение коэффициентов тригонометрического ряда через его сумму. Тригонометрический ряд Фурье функции f(x). Теорема Дирихле о достаточных условиях разложимости функции в ряд Фурье.
Определение. Тригонометрическим рядом называется ряд вида:
или,
короче,
Действительные числа ai, bi называются коэффициентами тригонометрического ряда.
Если ряд представленного выше типа сходится, то его сумма представляет собой периодическую функцию с периодом 2, т.к. функции sinnx и cosnx также периодические функции с периодом 2.
Пусть тригонометрический ряд равномерно сходится на отрезке [-; ], а следовательно, и на любом отрезке в силу периодичности, и его сумма равна f(x).
Таким образом, если функция f(x) – любая периодическая функция периода 2, непрерывная на отрезке [-; ] или имеющая на этом отрезке конечное число точек разрыва первого рода, то коэффициенты
существуют и называются коэффициентами Фурье для функции f(x).
Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.
Достаточные условия разложимости функции в ряд Фурье сформулированы в теореме Дирихле.
Т е о р е м а. Если в интервале [–l, l] функция f (x) имеет конечное число точек разрыва первого рода (или непрерывна) и конечное число точек экстремума (или не имеет их вовсе), то ее ряд Фурье сходится, т.е. имеет сумму S (x) во всех точках указанного интервала.
При этом:
а) в точках непрерывности функции f (x) ряд сходится к самой функции: S (x) = f (x);
b) в каждой точке разрыва xk функции f(x) ряд сходится к полусумме односторонних пределов функции слева и справа:
;
c) в обеих граничных точках интервала [–l, l] ряд сходится к полусумме односторонних пределов функции при стремлении х к этим точкам изнутри интервала:
.
Часто
периодическая функция f (z)
задается на интервале [–
,
].
В этом случае ряд Фурье для f (z)
записывается в несколько ином виде:
,
(57)
где
(m =
0, 1, 2, …); (58)
(m =
1, 2, 3 …). (59)
К этому ряду также применима теорема Дирихле и полученные ниже выводы.
38 Вопрос Ряды Фурье для четных и нечетных функций. Комплексная форма ряда Фурье.
Отметим следующие свойства четных и нечетных функций:
1)
2) Произведение двух четных и нечетных функций является четной функцией.
3) Произведение четной и нечетной функций – нечетная функция.
Справедливость этих свойств может быть легко доказана исходя из определения четности и нечетности функций.
Если f(x) – четная периодическая функция с периодом 2, удовлетворяющая условиям разложимости в ряд Фурье, то можно записать:
Таким образом, для четной функции ряд Фурье записывается:
Аналогично получаем разложение в ряд Фурье для нечетной функции:
Пусть функция f (x) определена в интервале [−π, π]. Применяя формулы Эйлера
можно записать ряд Фурье данной функции в комплексной форме:
Мы использовали здесь следующие обозначения:
Коэффициенты cn называются комплексными коэффициентами Фурье. Они определяются формулами