
- •1 Вопрос.
- •2 Вопрос.
- •Двойной интеграл в полярных координатах
- •Вычисление двойного интеграла в декартовых координатах
- •3 Вопрос.
- •4 Вопрос.
- •5 Вопрос.
- •Свойства
- •6 Вопрос.
- •7 Вопрос.
- •8 Вопрос.
- •9 Вопрос.
- •10 Вопрос
- •11 Вопрос
- •12 Вопрос
- •- (По моему легче учить из тетради по практике. Тут пизда)
- •Дифференциальные уравнения первого порядка.
- •Дифференциальные уравнения второго порядка.
- •Дифференциальные уравнения высших порядков.
- •Системы дифференциальных уравнений вида .
- •13 Вопрос
- •14 Вопрос
- •Метод решения Первый способ
- •Второй способ
- •15 Вопрос
- •16 Вопрос
- •Метод Рунге-Кутта
- •17 Вопрос
- •18 Вопрос
- •26 Вопрос
- •27 Вопрос
- •28 Вопрос
- •2. Необходимый признак сходимости.
- •29 Вопрос
- •30 Вопрос
- •31 Вопрос
- •32 Вопрос
- •33 Вопрос
- •34 Вопрос
- •35 Вопрос
- •36 Вопрос
- •37 Вопрос
- •38 Вопрос Ряды Фурье для четных и нечетных функций. Комплексная форма ряда Фурье.
2 Вопрос.
Двойной интеграл в полярных координатах
Пусть область D записывается системой неравенств в полярных координатах:
Такая область называется правильной в полярной системе координат, если каждый луч, выходящий из полюса, пересекает границу области не более, чем в 2-x точках.
По
определению
.
Т. к. значение двойного интеграла не зависит от способа разбиения области D на элементарные части, то сделаем это разбиение координатными линиями полярной системы координат (лучами из полюса и концентрическими окружностями).
Переведенный
в полярные координаты двойной интеграл
сведен к повторному по имеющейся записи
области D неравенствами для переменных
и
.
В результате получаем формулу для
вычисления двойного интеграла в полярных
координатах:
.
Обратите
внимание, что в правой части формулы
присутствует множитель
-
это якобиан (определитель Якоби)
преобразования, который находится
следующим образом:
Вычисление двойного интеграла в декартовых координатах
О: Область D называется правильной в направлении оси OY (ОХ), если любая прямая, параллельная оси OY(OX) и проходящая через внутреннюю точку области Д пересекает ее границу в двух точках.
Рис. 23.3
Рис. 23.4
Граница
области D, правильной в направлении оси
OY (рис. 23.3), может быть задана уравнениями
и
двойной интеграл в этом случае вычисляется
по формуле
(23.5)
причем
сначала вычисляется внутренний интеграл
в котором х считается постоянной. Выражение справа в (23.5) называется повторным, или двукратным интегралом.
Граница
области D, правильной в направлении оси
ОХ (рис. 23.4), может быть задана уравнениями:
Тогда
двойной интеграл вычисляется по формуле
(23.6)
Если область D правильная в направлении ОХ и OY (правильная область), то применимы обе формулы.
Рассмотрим геометрический смысл формулы (23.5), для формулы (23.6) рассуждения аналогичные (вывод формул приведен в [6. С. 310]).
Предположим,
что
и
граница области D является правильной
в направлении оси OY.
Из
разд. 23.1
Подсчитаем теперь объем V методом поперечных сечений (см. п.18.2.1):
(23.7)
Проводя
через т. (х,0,0) плоскость перпендикулярно
оси ОХ, получим в сечении криволинейную
трапецию
(рис.
23.5), с площадью
для
точек линии
при
постоянном х зависит только от у:
-
(23.8)
площадь поперечного сечения цилиндрического тела. Подставляя (23.8) в (23.7), получаем
Рис. 23.5
Таким образом, в формуле (23.7) слева и справа имеем объем цилиндрического тела.
Формулы (23.5) и (23.6) выведены в предположении, что область имеет специальный вид.
В общем случае область D разбивают на конечное число частей, являющихся правильными, и вычисляют для каждой из частей интеграл по формуле (23.5) или (23.6). Интеграл по всей области (свойство 3°) равен сумме полученных интегралов.
Если
область ГУ.
то
формулы (23.5) и (23.6)
примут вид
3 Вопрос.
Задача о вычислении массы неоднородного тела T по известной объемной плотности ρ(M) этого тела естественным образом приводит нас к понятию тройного интеграла.
Для вычисления массы указанного тела T разобьем его на достаточно малые участки T1, T2, ..., Tn. Приближенно можно считать объемную плотность ρ(M) каждого участка Tk постоянной и равной ρ(Mk), где Mk - некоторая точка участка Tk. В таком случае масса каждого участка Tk будет приближенно равна ρ(Mk) · vk, где vk - объем участка Tk.
Приближенное значение массы всего тела T будет равно сумме
Точное значение массы естественно определить как предел указанной суммы при неограниченном уменьшении каждого участка Tk. Этот предел и может быть взят за определение тройного интеграла от функции ρ(Mk) по трехмерной области T.