
- •4. Дифференциальное уравнение вынужденных электромагнитных колебаний. Резонанс
- •5. Первое уравнение Максвела
- •6. Второе уравнение Максвела
- •7. Полная система уравнений Максвелла в интегральной и дифференциальной формах
- •8. Электромагнитные волны. Волновое уравнение. Скорость распространения электромагнитных волн
- •Скорость распространения электромагнитных волн. Свойства электромагнитных волн
- •10. Электромагнитное поле. Энергия электромагнитного поля. Вектор Умова-Поинтинга
- •11. Законы геометрической оптики. Абсолютный и относительный показатели преломления.
- •12. Принцип действия микроскопа и телескопа
- •13. Интерференция света. Интерференция монохроматических волн
- •14. Расчёт интерференционной картины от двух когерентных источников
- •15. Способы получения интерференции. Интерферометры.
- •16. Дифракция. Принцип Гюйгенса-Френеля.
- •17. Метод зон Френеля. Прямолинейность распространения света. Метод зон Френеля.
- •18. Метод зон Френеля. Дифракция Френеля на круглом отверстии и диске.
- •19. Дифракция Фраунгофера на прямоугольной щели.
- •3. 5. Дифракция Фраунгофера на дифракционной решетке.
- •20. Дифракционная решетка. Голография. Разрешающая способность оптических приборов
- •21. Поглощение электромагнитных волн. Закон Бугера.
- •22. Поляризация света при отражении и преломлении на границе раздела двух диэлектрических сред. Закон Брюстера
- •23. Метод Малюса. Искусственная оптическая анизотропия: эффект Керра
- •24. Дисперсия. Нормальная и аномальная дисперсии.
- •25. Фазовая и групповая скорость.
- •26. Связь между групповой и фазовой скоростями.
- •27.Тепловое равновесное излучение. Характеристики теплового излучения тел.
- •28. Законы теплового излучения абсолютно черного тела. Формула Рэлея-Джинса.
- •Законы излучения абсолютно чёрного тела Классический подход Первый закон излучения Вина в 1893 году Вильгельм Вин, исходя из представлений классической термодинамики, вывел следующую формулу:
- •Второй закон излучения Вина в 1896 году Вин на основе дополнительных предположений вывел второй закон:
- •29.Элементарная квантовая теория излучения. Формула Планка
- •30. Фотоэффект. Законы и квантовая теория внешнего фотоэффекта
- •Законы внешнего фотоэффекта Править
- •31. Энергия, масса и импульс фотона
- •32. Эффект Комптона. Корпускулярно-волновая двойственность свойств света
- •33. Корпускулярно-волновой дуализм свойств материи. Гипотеза до Бройля. Дифракция электронов. Микрочастица в двухщелевом интерферметре
- •34. Соотношение неопределенностей. Набор одновременно измеримых величин
- •35. Задание состояния микрочастиц. Волновая функция и ее статистический смысл. Амплитуда вероятностей.
- •36. Временное и стационарное уравнение Шредингера
- •37. Микрочастица в потенциальном ящике
- •38. Прохождение частицы над и под потенциальным барьером
- •39. Частица в сферически симметричном поле. Водородоподобные атомы, их энергетические уровни.
- •40 Постулаты Бора. Линейчатые спектры атомов
- •41. Спектры водородоподобных атомов. Обобщенная формула Бальмера
- •42. Квантовые числа. Спин электрона. Принцип Паули. Таблица Менделеева.
- •43. Статистическое описание квантовой системы. Принцип неразличимости тождественных частиц.
- •44. Функции распределения Бозе-Энштейна и Ферми-Дирака.
- •45. Классическая и квантовая теория теплоемкости твердых тел. Фононы
- •46. Явление сверхпроводимости. Высокотемпературная сверхпроводимость.
- •47. Зонная теория твердого тела. Металлы, диэлектрики и полупроводники по зонной теории. Проводимость по зонной теории.
- •Металлы, диэлектрики и полупроводники по зонной теории
- •48. Собственные и примесные п/п. Удельная проводимость собственных и примесных п/п. Собственная проводимость полупроводников
- •Фотопроводимость полупроводников
- •50. Атомное ядро. Состав и характеристики атомного ядра. Изотопы.
- •51. Энергия связи ядра. Дефект массы.
- •52. Модели ядер. Ядерные силы.
- •53. Закон радиоактивного распада.
- •54. Альфа и бета распады. Правило смещения. Альфа- бета- и гамма- распады
- •Альфа-распад
- •Бета-распад
- •55. Закономерности альфа и бета распада. Антинейтрино.
- •56. Природа y излучения и его характеристики Гамма-распад
12. Принцип действия микроскопа и телескопа
Объективом (к объекту) называют линзу или систему линз с очень коротким фокусом, что обеспечивает большое увеличение. Полученное изображение рассматривается глазом в окуляр (око) , который является более длинофокусной линзой (или системой) , что позволяет обеспечить нормальное зрительное восприятие. Между линзами находится металлический корпус _ тубус, в котором предусмотрено перемещение линз для получения четкого изображения участка предмета (или всего небольшого объекта). Увеличение определяется произведением увеличений каждой из систем. Оно ограничено по величине для оптического микроскопа полуторами тысяч раз. Иначе размер линзы объектива будет таким, что появится явление дифракции -приходится заменять оптические системы на электронные (электронный микроскоп) для получения больших увеличений.
13. Интерференция света. Интерференция монохроматических волн
Интерфере́нция све́та — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.
Устойчивая
интерференционная картина возникает
только при наложении таких волн, которые
имеют постоянную во времени разность
фаз в каждой точке пространства. Волны,
удовлетворяющие этим
условиям,
и источники, создающие такие волны,
называются когерентными.
Условию когерентности удовлетворяют
монохроматические волны, имеющие
одинаковые частоты и постоянные разности
начальных
фаз. Монохроматическая волна характеризуется
определенной длиной волны
и
связанной с
ней
частотой
,
где
–
скорость света в вакууме.
14. Расчёт интерференционной картины от двух когерентных источников
Интерференционная
картина
– пространственное распределение
интенсивности излучения получающееся
в результате интерференции в месте её
наблюдения. Рассмотрим условия
возникновения интерференции. Пусть в
некоторой точке пространства существует
две произвольные электромагнитные
волны
и
.
при их наложении согласно принципу
суперпозиции напряжённость результирующего
поля равна сумме напряжённостей:
15. Способы получения интерференции. Интерферометры.
Получение когерентных волн для реализации интерференции в оптике осуществляется двумя способами:
инструментальное получение из данного источника двух когерентных;
деление фронта волны.
Схемы получения когерентных волн в первом случае основаны на получении двух источников, которые являются двумя изображениями данного единого излучающего центра (метод Юнга, бипризма Френеля, зеркала Френеля). Во втором случае получение когерентных волн происходит делением волны в пределах цуга на две волны (интерферометр Майкельсона, тонкие пленки, клин, кольца Ньютона).
Интерферометр — измерительный прибор, принцип действия которого основан на явлении интерференции. Принцип действия интерферометра заключается в следующем: пучок электромагнитного излучения (света, радиоволн и т. п.) с помощью того или иного устройства пространственно разделяется на два или большее количество когерентных пучков. Каждый из пучков проходит различные оптические пути и возвращается на экран, создавая интерференционную картину, по которой можно установить смещение фаз пучков.
Интерферометры применяются как при точных измерениях длин, в частности в станко- и машиностроении, так и для оценки качества оптических поверхностей и проверкиоптических систем в целом.