
- •4. Дифференциальное уравнение вынужденных электромагнитных колебаний. Резонанс
- •5. Первое уравнение Максвела
- •6. Второе уравнение Максвела
- •7. Полная система уравнений Максвелла в интегральной и дифференциальной формах
- •8. Электромагнитные волны. Волновое уравнение. Скорость распространения электромагнитных волн
- •Скорость распространения электромагнитных волн. Свойства электромагнитных волн
- •10. Электромагнитное поле. Энергия электромагнитного поля. Вектор Умова-Поинтинга
- •11. Законы геометрической оптики. Абсолютный и относительный показатели преломления.
- •12. Принцип действия микроскопа и телескопа
- •13. Интерференция света. Интерференция монохроматических волн
- •14. Расчёт интерференционной картины от двух когерентных источников
- •15. Способы получения интерференции. Интерферометры.
- •16. Дифракция. Принцип Гюйгенса-Френеля.
- •17. Метод зон Френеля. Прямолинейность распространения света. Метод зон Френеля.
- •18. Метод зон Френеля. Дифракция Френеля на круглом отверстии и диске.
- •19. Дифракция Фраунгофера на прямоугольной щели.
- •3. 5. Дифракция Фраунгофера на дифракционной решетке.
- •20. Дифракционная решетка. Голография. Разрешающая способность оптических приборов
- •21. Поглощение электромагнитных волн. Закон Бугера.
- •22. Поляризация света при отражении и преломлении на границе раздела двух диэлектрических сред. Закон Брюстера
- •23. Метод Малюса. Искусственная оптическая анизотропия: эффект Керра
- •24. Дисперсия. Нормальная и аномальная дисперсии.
- •25. Фазовая и групповая скорость.
- •26. Связь между групповой и фазовой скоростями.
- •27.Тепловое равновесное излучение. Характеристики теплового излучения тел.
- •28. Законы теплового излучения абсолютно черного тела. Формула Рэлея-Джинса.
- •Законы излучения абсолютно чёрного тела Классический подход Первый закон излучения Вина в 1893 году Вильгельм Вин, исходя из представлений классической термодинамики, вывел следующую формулу:
- •Второй закон излучения Вина в 1896 году Вин на основе дополнительных предположений вывел второй закон:
- •29.Элементарная квантовая теория излучения. Формула Планка
- •30. Фотоэффект. Законы и квантовая теория внешнего фотоэффекта
- •Законы внешнего фотоэффекта Править
- •31. Энергия, масса и импульс фотона
- •32. Эффект Комптона. Корпускулярно-волновая двойственность свойств света
- •33. Корпускулярно-волновой дуализм свойств материи. Гипотеза до Бройля. Дифракция электронов. Микрочастица в двухщелевом интерферметре
- •34. Соотношение неопределенностей. Набор одновременно измеримых величин
- •35. Задание состояния микрочастиц. Волновая функция и ее статистический смысл. Амплитуда вероятностей.
- •36. Временное и стационарное уравнение Шредингера
- •37. Микрочастица в потенциальном ящике
- •38. Прохождение частицы над и под потенциальным барьером
- •39. Частица в сферически симметричном поле. Водородоподобные атомы, их энергетические уровни.
- •40 Постулаты Бора. Линейчатые спектры атомов
- •41. Спектры водородоподобных атомов. Обобщенная формула Бальмера
- •42. Квантовые числа. Спин электрона. Принцип Паули. Таблица Менделеева.
- •43. Статистическое описание квантовой системы. Принцип неразличимости тождественных частиц.
- •44. Функции распределения Бозе-Энштейна и Ферми-Дирака.
- •45. Классическая и квантовая теория теплоемкости твердых тел. Фононы
- •46. Явление сверхпроводимости. Высокотемпературная сверхпроводимость.
- •47. Зонная теория твердого тела. Металлы, диэлектрики и полупроводники по зонной теории. Проводимость по зонной теории.
- •Металлы, диэлектрики и полупроводники по зонной теории
- •48. Собственные и примесные п/п. Удельная проводимость собственных и примесных п/п. Собственная проводимость полупроводников
- •Фотопроводимость полупроводников
- •50. Атомное ядро. Состав и характеристики атомного ядра. Изотопы.
- •51. Энергия связи ядра. Дефект массы.
- •52. Модели ядер. Ядерные силы.
- •53. Закон радиоактивного распада.
- •54. Альфа и бета распады. Правило смещения. Альфа- бета- и гамма- распады
- •Альфа-распад
- •Бета-распад
- •55. Закономерности альфа и бета распада. Антинейтрино.
- •56. Природа y излучения и его характеристики Гамма-распад
Скорость распространения электромагнитных волн. Свойства электромагнитных волн
1. Дж. Максвелл чисто математически показал, что скорость распространения электромагнитного поля в вакууме равна скорости света c=3⋅108mc
2. При распространении электромагнитных волн в каждой точке пространства происходят периодически повторяющиеся изменения электрического и магнитного полей.
3. Колебания векторов E→ и B→ в каждой точке электромагнитной волны происходят в одинаковых фазах и по двум взаимно перпендикулярным направлениям
E→⊥B→
в каждой точке пространства.
4. Векторы E→ и B→ образуют с вектором скорости распространения v→ правовинтовую систему
5. Период электромагнитной волны (частота) равен периоду (частоте) колебаний источника электромагнитных волн.
6. Электромагнитная волна, как и упругая, является носителем энергии, причем перенос энергии совершается в направлении распространения волны.
Переносимая энергия пропорциональна четвертой степени частоты. Поэтому источником интенсивных электромагнитных волн, способных переносить электромагнитную энергию на значительные расстояния, должны быть электромагнитные колебания очень высокой частоты (порядка миллиона герц). Понятно, что никакие механические генераторы не могут создать переменный ток частотой -106 Гц (для этого якорь должен был бы совершать 106 оборотов в 1 с). Источником электромагнитных волн такой частоты может быть только колебательный контур.
Электромагнитные волны распространяются прямолинейно в однородной среде, испытывают преломление при переходе из одной среды в другую, отражаются от преград. Для них характерны явления дифракции и интерференции.
9. Электромагнитные волны. Уравнение плоской электромагнитной волны. Шкала электромагнитных волн.
Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.
Волна называется плоской, если ее волновые повеpхности пpедставляют собой паpаллельные дpуг дpугу плоскости, пеpпендикуляpные фазовой скоpости волны (pис.1.3). Следовательно, лучи плоской волны - суть паpаллельные пpямые.
Таким обpазом, уpавнение плоской волны без диспеpсии имеет следующий вид:
или
Исследования, проводившиеся в самых разнообразных областях физики, позволили установить, что диапазон частот (или длин волн) электромагнитных волн чрезвычайно широк. Из теории Максвелла следует, что различные электромагнитные волны, в том числе и световые, имеют общую природу. Поэтому их удобно представить в виде единой шкалы, имеющей диапазон частот от нескольких герц до 1022 Гц, что соответствует длинам волн от тысяч километров до 10-14 м.
Исключительным успехом электромагнитной теории Максвелла явилось создание шкалы электромагнитных волн. Вдоль шкалы слева направо не-прерывно возрастает одна величина — частота (уменьшается длина волны), а ее увеличение приводит к появлению качественно различных излучений.
В виду огромного различия длин волн эта шкала построена в логарифмическом масштабе: метки на шкале соответствуют длинам, каждая из которых отличается в 10 раз от соседней. На шкале указаны участки длин волн (или λ), занимаемые различными типами электромагнитных волн. Распределение электромагнитных волн по типам сделано в соответствии со способами их генерации. С изменением длины электромагнитных волн изменяется и их взаимодействие с веществом, поэтому методы их регистрации и изучения различны. Различают следующие участки на шкале:
1) электромагнитные колебания низкой частоты (3⋅104 м <λ<∞);
2) радиоволны (1⋅10−4 м <λ≤3⋅104 м );
3) инфракрасное излучение (7,6⋅10−7 м <λ≤1⋅10−4 м );
4) видимый свет (4⋅10−7 м <λ≤7,6⋅10−7 м );
5) ультрафиолетовое излучение (6⋅10−9 м <λ≤4⋅10−7 м );
6) рентгеновское излучение (10−12 м <λ≤10−8 м );
7) γ-излучение (λ<10−11 м ).