Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по физике.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.24 Mб
Скачать

34. Соотношение неопределенностей. Набор одновременно измеримых величин

СООТНОШЕНИЯ НЕОПРЕДЕЛЕННОСТЕЙ — математически формулируемый принцип квантовой теории, согласно которому запрещается существование таких состояний физической системы, в которых две динамические переменные (далее обозначаемые в общем виде А и В) имели бы вполне определенное значение, если эти переменные являются канонически сопряженными величинами.

В 1927 г. В.Гейзенберг открыл так называемые соотношения неопределенностей, в соответствии с которыми неопределенности координаты и импульса связаны между собой соотношением: , где , h постоянная Планка. Своеобразие описания микромира в том, что произведение неопределенности (точности определения) положения Δx и неопределенности (точности определения) импульса Δpx всегда должно быть равно или больше константы, равной – . Из этого следует, что уменьшение одной из этих величин должно приводить к увеличению другой. Хорошо известно, что любое измерение сопряжено с определенными ошибками и совершенствуя приборы измерения, можно уменьшать погрешности, т. е. повышать точность измерения. Но Гейзенберг показал, что существуют сопряженные (дополнительные) характеристики микрочастицы, точное одновременное измерение которых, принципиально невозможно. Т.е. неопределенность – свойство самого состояния, оно не связано с точностью прибора.

Для других сопряженных величин – энергии E и времени t соотношения неопределенностей, имеет вид: .

35. Задание состояния микрочастиц. Волновая функция и ее статистический смысл. Амплитуда вероятностей.

Волновая функция и ее статистический смысл

Де Бройль связал со свободно движущейся частицей плоскую волну. Известно [cм. (1.5), (1.6)], что плоская волна, распространяющаяся в направлении оси х описывается уравнением

S=Acos(w t- kх+jО)

или в экспоненциальной форме

SOехр[i(w t- kх+jО)].

Заменив в соответствии с (1) и (2) w и k=2p /l через Е и p, уравнение волны де Бройля для свободной частицы пишут в виде

Y =АOехр[(-i/ )(Еt- pх)]. (16)

(в квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет |Y| 2, то это [cм.(16)] несущественно).

Функцию Y называют волновой функций или пси-функцией. Она, как правило, бывает комплексной.

Интепретацию волновой функции дал в 1926 г. Борн: квадрат модуля волновой функции определяет вероятность того , что частица будет обнаружена в пределах объема dV:

dP=|Y| 2 dV=YY*dV (17)

где Y* - комплексно - сопряженная волновая функция.

Величина |Y| 2=YY* = dP/ dV - имеет смысл плотности вероятности.

Интеграл от (17), взятый по всему пространству, должен равняться единице (вероятность достоверного события Р=1).

 (18)

Выражение (18) называют условием нормировки.

Отметим еще раз, что волновая функция описывает микросостояние частицы, ее волновые свойства и она позволяет ответить на все вопросы, которые имеет смысл ставить. Например, найти энергию и импульс частицы. Для этого следует вычислить следующие частные производные Y по координате х и времени t:

откуда

 (19)

Амплитуда вероятности в квантовой механике, то же, что волновая функция состояния системы. Название А. в. связано с тем, что вероятность обнаружения системы в данном состоянии равна квадрату абсолютного значения А. в. этого состояния.

Волновая функция в квантовой механике, величина, полностью описывающая состояние микрообъекта (например, электрона, протона, атома, молекулы) и вообще любой квантовой системы (например, кристалла).