
- •Примечание:Вопросы от 14-16 ищи, нажимая вопрос 13.
- •Последовательное соединение Определение последовательного соединения элементов
- •Формулы для расчета эквивалентного сопротивления при последовательном подключении элементов
- •Формула для расчета параллельного соединения сопротивлений
- •Формула для расчета параллельного соединения емкостей (конденсаторов)
- •Формула для расчета параллельного соединения индуктивностей
- •Пример свертывания параллельного сопротивления
- •Ток при параллельном соединении
- •Напряжение при параллельном соединении
- •Применение параллельного соединения
- •1. Собственная проводимость полупроводников
- •2. Примесная проводимость проводников
- •5. Прямая ветвь вах реального p-n перехода
- •Прямое включение диода. Прямой ток.
- •6. Обратное включение диода. Обратный ток.
- •Обратная ветвь вах реального p-n перехода
- •7. Классификация диодов] Типы диодов по назначению
- •Основные характеристики и параметры диодов
- •10. Стабилитроны Принцип действие стабилитрона
- •Основные параметры стабилитронов
- •Режим отсечки[править | править исходный текст]
- •Барьерный режим[править | править исходный текст]
- •Схемы включения[править | править исходный текст]
- •Основные параметры[править | править исходный текст]
- •Коэффициент передачи тока эмиттера биполярного транзистора в схеме с общей базой
- •Эксплуатационные параметры транзисторов
- •Классификация тиристоров
- •Принцип работы динистора.
- •Описание
- •Параметры и характеристики фотодиодов
- •Классификация
- •21. Дифференциатор на оу
- •23. Оптроны
- •Возможности и применение
- •Принцип работы lc-генераторов
- •Классификация усилительных устройств.
- •Показатели работы усилителей.
- •Характеристики усилителя.
- •Модель усилительного каскада.
- •28. Обратные связи в усилителях.
- •30. Усилительный каскад на биполярном транзисторе с оэ
- •Режим работы каскада
- •31. Вычитающий усилитель на оу
- •33. Инвертирующий усилитель на оу
- •35.Неинвертирующий усилитель на оу
- •34. Усилительный каскад на полевом транзисторе
- •36. Операционный усилитель (оу). Основные параметры и характеристики.
- •42. Однотактные ум
Возможности и применение
Изобретение первых светодиодов - полупроводниковых диодов в эпоксидной оболочке, выделяющих монохроматический свет при подключении к электротоку - относится к 1960-м годам. Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов, а также высокие затраты на их производство ограничивали их массовое применение в качестве источников света. Поэтому светодиоды в основном использовали в наружных электронных табло, ими оборудовали системы регулирования дорожного движения, применяли в оптоволоконных системах передачи данных и медицинском оборудовании.
Появление сверх ярких, а также синих (в середине 1990-х годов) и белых диодов (в начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание многих производителей к данным источникам света. Светодиоды стали использовать в качестве индикаторов режимов работы электронных устройств, в подсветке жидкокристаллических экранов различных приборов, в том числе - мобильных телефонов и пр. Впоследствии применение светодиодов основных цветов (красного, синего и зеленого) позволило получать цвета вывесок фактически любых оттенков, а также конструировать из них дисплеи с выводом полноцветной графики и анимации.
Светодиоды, за счет их малой потребности в электроэнергии, - оптимальный выбор декоративного освещения в местах, где существуют проблемы с энергетикой.
Срок службы светодиодов, превышающий в 6-8 раз долговечность люминесцентных ламп, относительная простота в работе с ними на этапе сборки изделий, отсутствие необходимости в регулярном обслуживании и их антивандальные качества делают эти источники света конкурентоспособными с более традиционными газоразрядными, люминесцентными лампами и лампами накаливания. Одним из немногих и существенных аспектов, за счет которого неон удерживает свои позиции в сегменте подсветки вывесок, является пока еще более высокая стоимость светодиодов.
26. Устройства, в которых колебания возникают без дополнительных внешних воздействий, называются автогенераторами, или генераторами с самовозбуждением. Автогенераторы, генерирующие высокочастотные (ВЧ) колебания, обычно строятся с применением элементов, использующих явление резонанса в колебательном контуре (LC-гене-раторы), либо в пьезоэлектрическом резонаторе. Автогенераторы низкочастотных (НЧ) колебаний (десятки кГц) строятся на основе резсторноемкостных схем (RC-генераторы).
Принцип работы lc-генераторов
LC-генераторы – это генераторы с индуктивной обратной связью. Принцип автогенератора можно понять, если представить себе, что в рассмотренном ранее резонансном усилителе электрические колебания поступают на вход не от внешнего источника, а с выхода этого же усилителя через цепь обратной связи. Если на схему подано напряжение питания, то в коллекторной (стоковой) цепи протекает ток, который содержит как постоянную, так и флуктуирующую составляющие. С чем связано появление флуктуирующей составляющей? Электрические заряды в цепи имеются в определенном количестве. Причем в любой цепи реальное количество носителей заряда постоянно меняется. Амплитудный спектр флуктуирующего сигнала равномерен вплоть до частот 1012 Гц. В спектре флуктуаций всегда найдется составляющая, частота которой близка к резонансной частоте контура, включенного в выходную цепь транзистора. За счет избирательных свойств контура эта спектральная составляющая будет выделена, а через цепь ОС поступит на вход усилителя.
Колебание, поступившее на вход, будет усиленно, как в обычном усилителе. В дальнейшем произойдет нарастание сигнала. Что для этого необходимо?
Для этого необходимо выполнить следующие условия:
обратная связь (ОС) между входом и выходом должна быть положительной (это фазовое условие самовозбуждения);
коэффициент усиления (Кус) должен превышать определенное значение (амплитудное условие самовозбуждения).
Если в схеме возникают колебания, их амплитуда возрастает до определенного значения (режим нарастания амплитуды), называемого переходным, а режим генератора, при котором амплитуда постоянна, - стационарным.
Более подробно рассмотрим работу автогенератора на примере LC-генератора.
RC- генераторы
Когда необходимо получить гармонические колебания на частотах от доли Гц до 10...100 кГц, использование LC-генератора становится не целесообразным (размеры контура очень большие). Схема генератора остается прежней, однако, вместо колебательного контура в выходной цепи ЭП используется чисто активная нагрузка.
Баланс
фаз обеспечивается фазовым сдвигом в
цепи ОС, использующие RC-элемент. Чтобы
условие самовозбуждения выполнялось,
цепь ОС должна обладать избирательностью.
Баланс амплитуд требует строгого
выполнения условия
,
в противном случае амплитуда будет не
стабильна. На основе RC-элемента можно
создать пассивные полосовые фильтры с
характеристиками, подобными колебательному
контуру (рисунок 18.9).
При отклонении от резонансной частоты f0 фазовый сдвиг изменяется, и коэффициент передачи уменьшается. Ниже частоты f0 проявляется действие возрастающего сопротивления конденсатора, включенного последовательно с R. Выше частотыf0 проявляется шунтирующее действие конденсатора, включенного параллельно R. Такой фильтр можно использовать в качестве нагрузки вместо LC-контура (но его добротность мала, что приводит к малой стабильности рабочей частоты). Гораздо большую добротность можно получить, если использовать полосовой заграждающий фильтр - мост Вина (рисунок 18.10). Сопротивления R1 и R2 моста находятся в соотношении R1=2R2. Напряжение Uмд снимается с диагонали моста, учитывая, что R1=2R2, независимо от частоты сигнала на входе. Uм2=Uм/3, поскольку на частоте f0 Uм1=Uм/3. Следовательно, на данной частоте Uмд=Uм1-Uм2=0. При отклонениях от f0 выходное напряжение растет и при больших расстройках стремится к Uмд=-Uм2=-Uм/3. В качестве активных элементов используются ОУ (рисунок 18.11). Диагональ моста подключается к входу ОУ. Для генерации обеспечивается ПОС на частоте f0, но если R2=R1/2, то на частоте f0 Uд=0 и обратная связь отсутствует. По этой причине мост немного расстраивают, выбирая R2=R1/(2+δ), где 0<δ≈1. В этом случае на резонансной частоте: Uмд=Uм1-Uм2=Uм/3-Uм/(3+δ)≈δUм/9, то есть напряжение, подаваемое на неинвертирующий вход, больше, чем напряжение, подаваемое на инвертирующий вход. Uос на входе совпадает по фазе с напряжением на выходе генератора (моста Вина). Таким образом, выполняется баланс фаз Кос=Uмд/Uм=δ/9, то есть обеспечивается К=1/Кос=9/δ.
27.
Усилитель электрических сигналов - это электронное устройство, предназначенное для увеличения мощности, напряжения или тока сигнала, подведенного к его входу, без существенного искажения его формы. Электрическими сигналами могут быть гармонические колебания ЭДС, тока или мощности, сигналы прямоугольной, треугольной или иной формы. Частота и форма колебаний являются существенными факторами, определяющими тип усилителя. Поскольку мощность сигнала на выходе усилителя больше, чем на входе, то по закону сохранения энергии усилительное устройство должно включать в себя источник питания. Т.о., энергия для работы усилителя и нагрузки подводится от источника питания. Тогда обобщенную структурную схему усилительного устройства можно изобразить, как показано на рис. 1.
Рисунок 1. - Обобщенная структурная схема усилителя
Электрические колебания поступают от источника сигнала на вход усилителя, к выходу которого присоединена нагрузка, энергия для работы усилителя и нагрузки подводится от источника питания. От источника питания усилитель отбирает мощность Ро - необходимую для усиления входного сигнала. Источник сигнала обеспечивает мощность на входе усилителя Рвх выходная мощность Рвых выделяется на активной части нагрузки. В усилителе для мощностей выполняется неравенство: Рвх < Рвых < Ро. Следовательно, усилитель - это управляемый входным сигналом преобразователь энергии источника питания в энергию выходного сигнала. Преобразование энергии осуществляется с помощью усилительных элементов (УЭ): биполярных транзисторов, полевых транзисторов, электронных ламп, интегральных микросхем (ИМС). варикапов и других.
Простейший усилитель содержит один усилительный элемент. В большинстве случаев одного элемента недостаточно и в усилителе применяют несколько активных элементов, которые соединяют по ступенчатой схеме: колебания, усиленные первым элементом, поступают на вход второго, затем третьего и т. д. Часть усилителя, составляющая одну ступень усиления, называется каскадом. Усилитель состоит из активных и пассивных элементов: к активным элементам относятся транзисторы, эл. микросхемы и другие нелинейные элементы, обладающие свойством изменять электропроводность между выходными электродами под воздействием управляющего сигнала на входных электродах. Пассивными элементами являются резисторы, конденсаторы, катушки индуктивности и другие элементы, формирующие необходимый размах колебаний, фазовые сдвиги и другие параметры усиления. Таким образом, каждый каскад усилителя состоит из минимально необходимого набора активных и пассивных элементов.
Структурная схема типичного многокаскадного усилителя приведена на рис. 2.
Рисунок 2. - Схема многокаскадного усилителя
Входной каскад и предварительный усилитель предназначены для усиления сигнала до значения, необходимого для подачи на вход усилителя мощности (выходного каскада). Количество каскадов предварительного усиления определяется необходимым усилением. Входной каскад обеспечивает, при необходимости, согласование с источником сигнала, шумовые параметры усилителя и необходимые регулировки.
Выходной каскад (каскад усиления мощности) предназначен для отдачи в нагрузку заданной мощности сигнала при минимальных искажениях его формы и максимальном КПД.
Источниками усиливаемых сигналов могут быть микрофоны, считывающие головки магнитных накопителей информации, различные преобразователи неэлектрических параметров в электрические.
Нагрузкой являются громкоговорители, электрические двигатели, сигнальные лампы, нагреватели и т. д. Источники питания вырабатывают энергию с заданными параметрами — номинальными значениями напряжений, токов и мощности. Энергия расходуется в коллекторных и базовых цепях транзисторов, в цепях накала и анодных цепях ламп; используется для поддержания заданных режимов работы элементов усилителя и нагрузки. Нередко энергия источников питания требуется и для работы преобразователей входных сигналов.