
- •1. Предмет и объект защиты
- •2. Политика информационной безопасности
- •3. Угрозы безопасности в компьютерной системе
- •Уязвимости компьютерной сети
- •Повышение надежности компьютерной системы
- •Создание отказоустойчивых устройств системы
- •Способы идентификации и аутентификации пользователей
- •9.Управление доступом к ресурсам кс
- •Матричное
- •Мандатный способ
- •Дискреционный способ
- •10.Racf как средство управления доступом.
- •11.Методы контроля целостности инфы
- •12.Стандарты шифрования Алгоритм des
- •Стандарт Rijndall
- •Российский стандарт
- •13. Цифровая стеганография
- •Применение цифровой стеганографии
- •14. Атаки на стегосистемы
- •16.Скрытие данных в неподвижных изображениях
- •17. Стенографические системы идентификации номеров.
- •15. Международные стандарты безопасности
- •18. Виды вредоносных программ
- •19. Шпионские и рекламные программы
- •Особенности функционирования
- •Программы отслеживания
- •Вирусы и сетевые черви
- •Связь со шпионским по
- •20. Средства борьбы:
- •Финансовые потери от компьютерных вирусов
- •23.Классификация защищенных локальных сетей.
- •По степени защищенности используемой среды
- •По способу реализации
- •По назначению
- •По типу протокола
- •24.Назначение межсетевых экранов
- •Функции межсетевых экранов
- •Фильтрация трафика
- •Выполнение функций посредничества
- •Дополнительные возможности мэ
- •25. Классификация межсетевых экранов
- •Фильтрующие маршрутизаторы
- •Шлюзы сеансового уровня
- •Шлюзы уровня приложений
- •Типы межсетевых экранов
- •Уровень сетей и пакетные фильтры
- •Уровень приложений
- •26.Фильтрующие маршрутизаторы
- •Фильтрующие маршрутизаторы
- •27.Экранирующие агенты
- •28. Шлюзы прикладного уровня
- •Недостатки шлюзов прикладного уровня
- •29.Защищенные виртуальные сети
- •31.Протоколы vpl
- •32.Протоколы канального уровня
- •33.Протокол ipSec
- •35. Правовые вопросы обеспечения защиты данных.
Стандарт Rijndall
В
98 году после отказа от DES
опять объявили конкурс; победил стандарт
Rijndall. Это тоже блочный
алгоритм. Исходная информация в виде
массива
.
Ключ 192 бита. Над каждым массивом одна
и та же последовательность операций:
замена байтов
сдвиг строк
перемешивание столбцов
добавление раундового ключа
Российский стандарт
Длина ключа 256 бит. С 89 года используется метод гаммирования, используются константы. Блок исходной информации 64 бит. Замена делается на основе сетей Файстеля.
Имитовставка – контрольная информация.
Получается:
Берется первый элемент исходной информации и его подвергают 16 раундам преобразования (простая замена) с номером раундового ключа. Затем побитовое сложение со вторым блоком. В конце получается последовательность в 64 бит хеш-функцию). Для имитовставки информация берется из этих 64 битов (это своего рода избыточная информация, длина зависит от степени опасности, атак на вскрытие).
При получении:
При расшифровании считается имитовставка. При несовпадении информация считается ложной.
13. Цифровая стеганография
Цифровая стеганография — направление классической стеганографии, основанное на сокрытии или внедрении дополнительной информации в цифровые объекты, вызывая при этом некоторые искажения этих объектов. Но, как правило, данные объекты являются мультимедиа-объектами (изображения, видео, аудио, текстуры 3D-объектов) и внесение искажений, которые находятся ниже порога чувствительности среднестатистического человека, не приводит к заметным изменениям этих объектов. Кроме того, в оцифрованных объектах, изначально имеющих аналоговую природу, всегда присутствует шум квантования; далее, при воспроизведении этих объектов появляется дополнительный аналоговый шум и нелинейные искажения аппаратуры, все это способствует большей незаметности сокрытой информации.
Основные направления:
Встраивание информации с целью ее скрытой передачи;
Встраивание ЦВЗ – watermaking;
Встраивание идентификационных номеров - fingerprinting;
встраивание заголовков – captioning
Применение цифровой стеганографии
Из рамок цифровой стеганографии вышло наиболее востребованное легальное направление — встраивание цифровых водяных знаков (ЦВЗ) (watermarking), являющееся основой для систем защиты авторских прав и DRM (Digital rights management) систем. Методы этого направления настроены на встраивание скрытых маркеров, устойчивых к различным преобразованиям контейнера (атакам).
Полухрупкие и хрупкие ЦВЗ используются в качестве аналоговой ЭЦП, обеспечивая хранение информации о передаваемой подписи и попытках нарушения целостности контейнера (канала передачи данных).
Например, разработки Digimarc в виде плагинов к редактору Adobe Photoshop позволяют встроить в само изображение информацию об авторе. Однако такая метка неустойчива, впрочем как и абсолютное их большинство. Программа Stirmark, разработчиком которой является ученый Fabien Petitcolas, с успехом атакует подобные системы, разрушая стеговложения.
Алгоритмы встраивания
Все алгоритмы встраивания скрытой информации можно разделить на несколько подгрупп:
Работающие с самим цифровым сигналом. Например, метод LSB.
«Впаивание» скрытой информации. В данном случае происходит наложение скрываемого изображения (звука, иногда текста) поверх оригинала. Часто используется для встраивания ЦВЗ.
Использование особенностей форматов файлов. Сюда можно отнести запись информации в метаданные или в различные другие не используемые зарезервированные поля файла.
Классификация по способу встраивания информации
Линейные – аддитивные (метод LSB Least Significant Bit)
Нелинейные – используют скалярное или векторное квантование
Фрактальное кодирование изображений основано на представлении самоподобия как источника избыточности