
- •Вопрос1.1.Цепь переменного тока с резистивным элементом. 2Мгновенная и активная мощности.
- •Вопрос2. 1.Цепь переменного тока с индуктивным элементом. 2.Индуктивное сопротивление. 3.Мгновенная и реактивная индуктивная мощности.
- •Вопрос3. 1.Цепь переменного тока с емкостным элементом. 2.Емкостное сопротивление. 3.Мгновенная и реактивная емкостная мощности.
- •Значение емкости и индуктивности цепи, при которых наступает резонанс напряжений:
- •Вопрос 6Трехфазные цепи. Основные определения и понятия.
- •Соединение фаз генератора и приемника звездой
- •Классификация приемников в трехфазной цепи
- •Четырехпроводная цепь
- •Симметричная нагрузка приемника
- •Несимметричная нагрузка приемника
- •Вопрос7. Трехфазная цепь при соединении фаз звездой.
- •Вопрос8. Трехфазная цепь при соединении фаз треугольником.
- •Симметричная нагрузка
- •Вопрос9. Назначение, устройство и принцип работы однофазного трансформатора. Режимы работы трансформатора. Причины потерь электрической мощности в трансформаторе.
- •Вопрос10. Кпд трансформатора. Метод непосредственных измерений и косвенный метод определения кпд, опыт холостого хода и опыт короткого замыкания.
- •Вопрос11. Автотрансформаторы и регуляторы напряжения на их основе.
- •Вопрос 12Вращающееся магнитное поле в трехфазной системе токов, частота вращения поля, направление вращения.
- •Вопрос13. Устройство и принцип работы асинхронного трехфазного электродвигателя. Изменение частоты и направления вращения ротора. Особенности пуска.
- •Вопрос14. Однофазные асинхронные электродвигатели, особенности конструкции, способы пуска. Асинхронный однофазный электродвигатель с расщепленными магнитными полюсами.
- •Вопрос15. Устройство и принцип работы трехфазного синхронного генератора.
- •Вопрос16. Понятие о работе синхронного генератора параллельно с сетью. Условия синхронизма.
- •Вопрос17.Электрический холостой ход синхронной машины, обратимость синхронных машин, синхронные электродвигатели. Асинхронный пуск синхронного электродвигателя.
- •Вопрос18. Назначение, устройство и принцип работы генераторов постоянного тока. Способы возбуждения и внешние характеристики генераторов.
- •Вопрос19. Двигатели постоянного тока, способы их возбуждения, характеристики и особенности свойств. Реверсирование и изменение частоты вращения двигателей.
- •Вопрос20. Коллекторные двигатели переменного тока.
- •Вопрос21. Беспереходные полупроводниковые приборы: термисторы, фоторезисторы, варисторы;их свойства и области применения.
- •Вопрос22. Полупроводниковые диоды: их структура, разновидности и свойства.
- •Вопрос23. Биполярные транзисторы: структура, принцип работы, параметры, изображение на схемах, способы включения в четырёхполюсник.
- •2. Эквивалентные схемы биполярного транзистора
- •3. Статические характеристики транзистора
- •4. Температурные и частотные свойства транзистора
- •5. Эксплуатационные параметры транзистора
- •6. Полевые транзисторы
- •Вопрос25. Резистивный усилитель на биполярном транзисторе с общей базой и его свойства.
- •Вопрос26. Резистивный усилитель на биполярном транзисторе с общим эмиттером и его свойства.
- •Классификация усилительных устройств.
- •Показатели работы усилителей.
- •Характеристики усилителя.
- •Обратные связи в усилителях.
- •Модель усилительного каскада.
- •Усилитель постоянного тока в интегральном исполнении.
- •Усилители мощности.
- •Вопрос28. Резистивный усилитель на биполярном транзисторе с общим коллектором (эмиттерный повторитель).
- •Вопрос29. Автогенератор как линейный усилитель с положительной обратной связью. Условия самовозбуждения генератора (баланс амплитуд и баланс фаз).
- •1.2 Процесс самовозбуждения
- •2. Условия самовозбуждения автогенератора
- •2.1 Баланс амплитуд и фаз
- •2.2 Режимы самовозбуждения автогенератора
- •3. Основные схемы lc- автогенераторов
- •3.1 Одноконтурные схемы автогенераторов на транзисторах
- •Вопрос30. Генератор с резонансным контуром (генератор lc-типа): вариант принципиальной схемы на биполярном транзисторе, принцип работы, параметры выходного сигнала.
- •Вопрос31. Генератор гармонических колебаний rc-типа: принципиальная схема, принцип работы, параметры выходного сигнала.
- •Вопрос32. Мультивибратор на биполярных транзисторах: принципиальная схема, принцип работы, параметры выходного сигнала.
Вопрос29. Автогенератор как линейный усилитель с положительной обратной связью. Условия самовозбуждения генератора (баланс амплитуд и баланс фаз).
В простейшем случае высокочастотные колебания можно получать с помощью обычного колебательного контура. Предположим, что контур получил от постоянного источника некоторый первоначальный запас энергии. При этом в нем возникают свободные (собственные) затухающие колебания. Чтобы сделать их незатухающими, необходимо все время пополнять запас энергии в контуре, поскольку часть её процессе колебаний необратимо преобразовать в тепло.
Реализовать источник энергии, необходимый для получения незатухающих колебаний в контуре, можно с помощью устройства рис. №1
Рис.№1. Структурная схема LC-автогенератора
Схема содержит усилительный элемент 1 (электронную лампу или транзистор), нагрузкой которого является колебательная система 2, например, колебательный контур с сосредоточенными параметрами. Часть напряжения с контура через цепь обратной связи 3 поступает на вход усилительного элемента. Устройство получает питание от источника напряжения 4.
Напряжение свободных колебаний, поступающих через элемент 3 на вход элемента 1, усиливается им и вновь подается на колебательную систему. Это напряжение должно быть после усиления достаточным для компенсации потерь в контуре. Кроме этого, цепь обратной связи должна вызывать такой сдвиг фазы колебаний, поступающих на вход элемента 1, при котором контур будет своевременно, т.е. в такт со свободными колебаниями в нем, получать энергию. При одновременном выполнении указанных условий данное устройство создает (генерирует) незатухающие колебания, т.е. представляет собой автогенератор.
1.2 Процесс самовозбуждения
В момент включения источника питания во всех цепях генератора проходят кратковременные импульсы токов. Так как одиночный импульс образует сплошной спектр колебаний, частота одного из них обязательно совпадает с собственной частотой колебательной системы генератора. Это колебание возбудит колебательную систему, и по цепи обратной связи на управляющий электрод усилительного элемента поступит напряжение данной частоты. Под действием этого напряжения выходной ток усилительного элемента станет изменяться с той же частотой. Переменная составляющая тока, проходя через колебательную систему, будет усиливать возникшие в ней колебания. Амплитуда колебаний будет нарастать до тех пор, пока энергия, поступающая в колебательную систему, станет равной энергии потерь, после чего схема переходит в стационарный режим, характеризующийся постоянной или стационарной амплитудой колебаний.
Если контуру сообщить некоторый первоначальный запас энергии, в нем возникают затухающие колебания. При подключении к контуру нагрузки, имеющий активное сопротивление, скорость затухания колебаний увеличивается, что свидетельствует об увеличении потерь в нем. Следовательно, можно считать, что если энергия потребляется от контура, в него как бы вноситься положительное активное сопротивление R+, увеличивающее сопротивление потерь контура Rп. Если же энергия поступает в контур, это эквивалентно уменьшению потерь в контуре, т.е. как бы внесению в него отрицательного активного сопротивления R-.
В
колебательную систему автогенератора
энергия поступает от усилительного
элемента (отрицательное сопротивление)
и одновременно потребляется цепью
обратной связи и нагрузкой (положительное
сопротивление). Следовательно, в
колебательную систему вноситься
некоторое эквивалентное сопротивление
Rэк=R+ -
R-.
Если же знак этого сопротивления
положительный (Rэк>0),
потери в колебательной системе
увеличиваются и колебания быстро
затухают; если знак отрицательный
(Rэк<0)
и кроме этого
<
Rп,
происходит частичная компенсация
потерь и скорость затухания колебаний
уменьшается. При Rэк<0
и
>
Rп энергия,
поступающая в колебательную систему,
больше энергии потерь, что приводит к
непрерывному росту амплитуды колебаний.
В стационарном режиме работы автогенератора
отрицательное вносимое сопротивление
становиться равным (по модулю)
сопротивлению потерь колебательной
системы. Это означает, что поступающая
в неё энергия полностью компенсирует
потери, вследствие чего амплитуда
автоколебаний становится постоянной.