
- •1. Классификация компьютерных сетей
- •2. Эталонная модель взаимодействия открытых систем. Нижние уровни.
- •3. Эталонная модель взаимодействия открытых систем. Верхние уровни.
- •4. Характеристики линий связи
- •5. Классификация линий связи
- •6. Методы аналоговой модуляции
- •7. Спектры сигналов при амплитудной модуляции
- •8. Спектры сигналов при потенциальном кодировании
- •9. Соотношения спектров сигналов при различных способах цифровой модуляции
- •10. Методы избыточного кодирования и причины их применения
- •11. Методы скрэмблирования и причины их применения
- •12. Методы коммутации при передаче данных
- •13. Канальный уровень протоколы подуровня управления логическим каналом
- •14. Метод доступа к физической среде csma/cd
- •15. Ограничение диаметра сети при использовании метода доступа к физической среде csma/cd
- •16. Множественный доступ с передачей полномочий для моноканала
- •17. Алгоритмы входа станции в сеть и выхода ее из сети при использовании множественного доступа с передачей полномочий для моноканала
- •18. Множественный доступ с передачей полномочий для циклического кольца
- •19. Оценка максимального времени доставки сообщения в сетях с методами доступа ieee 802.4, ieee 802.5
- •20. Архитектура сети Ethernet fast ethernet
- •21. Устройства расширения сетей. Мост
- •22. Устройства расширений сетей. Маршрутизатор.
- •23. Виртуальные локальные сети vlan
- •24. Особенности и проблемы распространения электромагнитных волн.
- •25. Схемы беспроводных соединений
- •26. Методы кодирования для беспроводной передачи данных
- •27. Прямое последовательное расширение спектра(dsss)
- •29. Bluetooth принципы построения, функционирования и основные параметры
- •30. Классы адресов стека протоколов tcp/ip
- •31. Проблема ограничения количества ip адресов и ее решение с помощью масок
- •32. Проблема ограничения количества ip адресов и ее решение с помощью технологий bnat и napt
- •33. Автоматизация процесса назначения ip адресов
- •34. Отображение ip адресов на локальные адреса
- •35. Организация доменов и доменных имен
- •36. Маршрутизация без использования масок
- •37. Маршрутизация с использованием масок постоянной длины
- •38. Маршрутизация с использованием масок переменной длины
- •3 9. Структура таблицы маршрутизации. Алгоритм выбора маршрута.
- •40. Бесклассовая маршрутизация cidr
- •33. Проблема ограничения количества ip адресов и ее решение с помощью бесклассовой адресации (возможно надо дополнить или править)
- •41. Классификация протоколов маршрутизации
- •42. Протокол маршрутизации rip
- •43. Протокол маршрутизации ospf (выбор кратчайшего пути первым)
7. Спектры сигналов при амплитудной модуляции
Спектр результирующего модулированного сигнала зависит от типа модуляции и скорости модуляции (желаемой скорости передачи битов исходной информации).
При амплитудной модуляции спектр состоит из синусоиды несущей частоты fc и двух боковых гармоник: (fc + fm) и (fc – fm), где fm — частота модуляции. Частота fm определяет пропускную способность линии при данном способе кодирования. При небольшой частоте модуляции ширина спектра сигнала будет также небольшой (равной 2fm), поэтому сигналы не будут искажаться линией, если ее полоса пропускания будет больше или равна 2fm.
8. Спектры сигналов при потенциальном кодировании
Пусть логическая единица кодируется положительным потенциалом, а логический ноль — отрицательным потенциалом такой же величины. Для упрощения вычислений предположим, что передается информация, состоящая из бесконечной последовательности чередующихся единиц и нулей.
Для потенциального кодирования спектр непосредственно получается из формул Фурье для периодической функции. Если дискретные данные передаются с битовой скоростью N бит/с, то спектр состоит из постоянной составляющей нулевой частоты и бесконечного ряда гармоник с частотами f0, 3f0, 5f0, 7f0,..., где f0 = N/2. Амплитуды этих гармоник убывают достаточно медленно — с коэффициентами 1/3, 1/5,1/7,... от амплитуды гармоники f0. В результате спектр потенциального кода требует для качественной передачи широкую полосу пропускания. Кроме того, нужно учесть, что реально спектр сигнала постоянно меняется в зависимости от того, какие данные передаются по линии связи. Например, передача длинной последовательности нулей или единиц сдвигает спектр в сторону низких частот, а в крайнем случае, когда передаваемые данные состоят только из единиц (или только из нулей), спектр состоит из гармоники нулевой частоты. При передаче чередующихся единиц и нулей постоянная составляющая отсутствует. Поэтому спектр результирующего сигнала потенциального кода при передаче произвольных данных занимает полосу от некоторой величины, близкой к 0 Гц, до примерно 7f0.
9. Соотношения спектров сигналов при различных способах цифровой модуляции
f0 — частота основной гармоники спектра. N — битовая скорость передачи данных.
Потенциальный код NRZ
при передачи чередующихся 1 и 0 — f0 = N/2
при длинных последовательностях 1 или 0 — f0 → 0
Биполярное кодирование AMI
при передаче чередующихся 1 и 0 — f0 = N/4
при длинных последовательностях 1 — f0 = N/2
при длинных последовательностях 0 — f0 → 0
в целом спектр уже, чем у NRZ
Биполярный импульсный код
при передаче чередующихся 1 и 0 — f0 = N/2
при длинных последовательностях 1 или 0 — f0 = N
спектр шире, чем у потенциальных кодов
Манчестерский код
при передаче чередующихся 1 и 0 — f0 = N/2
при длинных последовательностях 1 или 0 — f0 = N
в среднем — f0 = 3/4N
в среднем, спектр в 1,5 раза уже, чем у биполярного импульсного кода
Потенциальный код 2B1Q
в среднем — f0 = N/4
имеет самый узкий спектр