
- •1. Общие сведения об электронных системах с цифровым управлением. Тенденции развития электронного оборудования.
- •2. Состав электронного оборудования современного автомобиля. Перспективы развития электронного оборудования.
- •3. Активные элементы: диоды, транзисторы, тиристоры. Пассивные элементы: резисторы, конденсаторы, катушки индуктивности. Обозначение, маркировка, характеристики и классификация.
- •4. Интегральные схемы: маркировка, назначение, классификация. Чтение и основы проектирования электрических принципиальных схем.
- •5) Информационные элементы (датчики) электронных систем автоматического управления. Виды датчиков электронных систем, их характеристики, принцип работы и выходные сигналы.
- •7) Датчики частоты вращения, скорости перемещения и положения, давления и детонации, температуры, объемного и массового расхода и состава газов и жидкостей и др.(все что нашел)
- •8) Основные хар-ки и принципы действия датчиков. Техническое обслуживание, диагностирование и ремонт датчиков.
- •9) Исполнительные элементы электронных систем автоматического управления. Виды исполнительных механизмов электронных систем, принципы их работы.
- •10) Классификация исполнительных элементов по принципу действия и функциональному назначению. См вопрос №9
- •11) Особенности электромагнитных, магнитоэлектрических, пьезоэлектрических исполнительных элементов.
- •16. Электронные и микропроцессорные системы зажигания. Регулировка угла опережения зажигания.
- •17. Системы зажигания с индукционными, оптоэлектронными датчиками и. Датчиками Холла. Разновидности датчиков и принцип их работы.
- •18. Системы низковольтного и высоковольтного распределения напряжения. Системы с многовыводными и индивидуальными катушками зажигания. Схемы управления катушками зажигания.
- •19) Техническое обслуживание, диагностирование и ремонт систем зажигания
- •20) Электронные системы распределенного впрыска бензиновых двигателей
- •23. Техническое обслуживание, диагностирование и ремонт электронных систем распределенного впрыска бензиновых двигателей.
- •26. Техническое обслуживание, диагностирование и ремонт электронных систем центрального впрыска бензиновых двигателей
- •30. Техническое обслуживание, диагностирование и ремонт электронных систем впрыска топлива дизельных двигателей.
- •31. Система рециркуляции отработавших газов. Устройство и принцип действия. Система улавливания паров топлива. Автоматическое регулирование фаз газораспределения.
- •32. Техническое обслуживание, диагностирование и ремонт систем снижения токсичности отработавших газов автомобилей.
- •33. Устройство и принцип действия антиблокировочных тормозных систем.
- •35. Системы электронной блокировки дифференциала ведущего моста. Системы противобуксовки ведущих колес.
- •36. Техническое обслуживание, диагностирование и ремонт антиблокировочных систем.
- •37) Устройство и принцип работы автоматической коробки передач с электронным управлением.
- •39) Программное управление автоматическим переключателем скоростей. Принципиальная электрическая схема акп.
- •40) Техническое обслуживание, диагностирование и ремонт электронного оборудования автоматических коробок передач.
- •41. Системы блокирования движения, комфорта и безопасности. Центральный замок дверей. Противоугонные системы. Системы климат-контроля. Системы управления стеклоподъемниками.
- •42. Устройство и принцип действия подушек безопасности. Системы ориентирования автомобиля при движении и парковке. Круиз-контроль. Электронные системы управления подвеской.
- •44. Нормализованные и специализированные инструменты и оснастка для выполнения технического обслуживания и ремонта электронных систем управления.
- •45. Оборудование для общего и поэлементного диагностирования электронных систем управления автомобилем.
- •46. Специализированное и универсальное оборудование: мотор-тестеры, сканирующие тестеры и имитаторы отдельных систем управления. Тестеры отдельных приборов электронного оборудования.
- •47. Имитаторы сигналов датчиков. Аналоговые и цифровые приборы: мультиметры, осциллографы и др.
- •50. Самодиагностика электронных блоков управления. Техническое обслуживание, диагностирование и ремонт электронных блоков управления.
3. Активные элементы: диоды, транзисторы, тиристоры. Пассивные элементы: резисторы, конденсаторы, катушки индуктивности. Обозначение, маркировка, характеристики и классификация.
Активные элементы: диоды, транзисторы, тиристоры
Диоды.
1) Выпрямительные диоды различных классов, отличающиеся напряжением, временем переключения, рабочей полосой частот. Обозначение стандартное. В качестве выпрямительных используют сплавные эпитаксиальные и диффузионные диоды, выполненные на основе несимметричных p-n-переходов. Для выпрямительных диодов характерны малые сопротивления и большие токи в прямом режиме. Барьерная емкость из-за большой площади перехода достигает значений десятков пикофарад. Германиевые выпрямительные диоды применяют до температур 70-80оС, кремниевые до 120-150оС, арсенид-галлиевые до 150оС.
2) Стабилитроны – диоды, предназначенные для работы в режиме электрического пробоя. Условное обозначение отличается от стандартного (см. таблицу 2.1). В этом режиме при значительном изменении тока стабилитрона напряжение на нем меняется мало. В низковольтных (до 5,7В) стабилитронах используется туннельный пробой, а в высоковольтных – лавинный пробой. В них более высокоомная база.
3) Диод Шотки – разновидность выпрямительных диодов, работающий на основе выпрямляющего контакта металл – полупроводник, образующего контактную разность потенциалов из-за перехода части электронов из полупроводника n -типа в металл и уменьшения концентрации электронов в полупроводниковой части контакта. Эта область обладает повышенным сопротивлением. При подключении внешнего источника плюсом к металлу, а минусом к полупроводнику, потенциальный барьер понизится и через переход пойдет прямой ток.
4) Варикап – полупроводниковый диод, предназначенный для работы в качестве емкости, величина которой зависит от приложенного к нему напряжения. Основная его характеристика – вольт-фарадная С( U )
5) Туннельный диод – полупроводниковый диод с падающим участком на прямой ветви ВАХ, обусловленный туннельным эффектом. Обозначение и ВАХ даны в таблице 2.1. Падающий участок характеризуется отрицательным дифференциальным сопротивлением.
В зависимости от функционального назначения туннельные диоды условно подразделяются на усилительные, генераторные и переключательные.
Таблица 2.1
Тип диода |
Условное обозначение |
Характеристика |
Выпрямительный |
|
|
Диод Шотки |
|
|
Стабилитрон |
|
|
Стабистор |
|
|
Варикап |
|
|
Туннельный диод |
|
|
Обращенный диод |
|
|
Транзистор
1 Транзистор - это сэндвич, состоящий из материалов типа р-n-р или n-р-n, вроде двух диодов, соединенных одноименными полюсами.
Если пропустить ток между внутренним и одним из наружных слоев, то это позволит пропустить значительно больший ток между наружными слоями.
Этот эффект иллюстрирует рис. 1.24. Если подвести ток I6 к базе, то от коллектора к эмиттеру также потечет ток. Ток коллектора значительно превышает ток базы и может им управляться. Включение или выключение тока базы приводит к одновременному включению или выключению тока коллектора.
Таким образом, транзистор может исполнять роль выключателя.
Сначала надо пропустить ток через переход база-эмиттер. Для кремниевых транзисторов для этого необходимо напряжение около 650 мВ. Ток через базу обычно составляет примерно 1/50 от тока коллектора.
Транзистор может выполнять роль выключателя - в этой роли он часто используется в автомобильном электронном оборудовании.
Если вместо включения и выключения изменять значение тока базы, то ток коллектора тоже будет меняться, но в 50 раз больше. В этом случае транзистор выполняет роль усилителя тока.
Тиристор
Uвых
2 После того, как ток на управляющем электроде открыл тиристор, дальнейшее изменение управляющего тока не оказывает на тиристор никакого воздействия и он постоянно будет находиться в открытом (проводящем) состоянии. Выключить тиристор можно лишь снизив почти до нуля напряжение анод-катод. Это свойство идеально подходит для управления конденсаторной системой зажигания (см. главу 6) и ряда других устройств электрооборудования автомобиля.
3 Если напряжение на аноде положительно по отношению к катоду (см. рис. 1.30), то для включения устройства требуется подать на управляющий электрод импульс тока длительностью всего в несколько микросекунд.
В проводящем состоянии тиристор имеет примерно постоянное падение напряжения, примерно в 1 В, независимо от проходящего по нему тока.
Тиристор, пропускающий ток 10А, требует для своего включения импульс тока силой примерно 60 мА при напряжении 3 В.
Пассивные элементы: резисторы, конденсаторы, катушки индуктивности
Емкостный элемент (конденсатор)
Условное графическое изображение конденсатора приведено на рис. 3,а.
Конденсатор – это пассивный элемент, характеризующийся емкостью. Для расчета последней необходимо рассчитать электрическое поле в конденсаторе.
Резистор
Переменные резисторы – резисторы, у которых значение сопротивления меняется при помощи специальной ручки (вращающейся, или ползункового типа).
На
схемах переменные резисторы обозначаются:
Ярким представителем переменных резисторов является регулятор громкости на твоих компьютерных звуковых колонках.
Подстроечные резисторы – резисторы, предназначенные для редких регулировок, у которых значение сопротивления меняется при помощи шлица, вращаемого отвёрткой.
На схемах подстроечные
резисторы обозначаются:
Продолжение вопроса №3. Устанавливаются подстроечные резисторы, как правило, на печатных платах радиосхем.
Чаще всего, переменные и подстроечные резисторы подключаются на схемах как делители напряжения, или как делители тока. Но об этом позже.
Постоянные резисторы – резисторы, у которых значение сопротивления постоянно и не зависит от внешних воздействий (температуры, света, протекающего через него тока, приложенного напряжения и т.д.), не зависимо от происхождения этих воздействий. Выпускаемые промышленностью постоянные резисторы на схемах обозначаются:
|
резистор без указания мощности |
|
резистор мощностью рассеивания 0,125 Вт |
|
резистор мощностью рассеивания 0,25 Вт |
|
резистор мощностью рассеивания 0,5 Вт |
|
резистор мощностью рассеивания 1 Вт |
|
резистор мощностью рассеивания 2 Вт |
|
резистор мощностью рассеивания 5 Вт |
Номинальный ряд
Все резисторы, производимые промышленностью, по ГОСТу объединяются в серии и составляют номинальный ряд, который увеличивается умножением базового значения на 1, 10, 100, 1 кОм, 10 кОм, 100 кОм, 1 МОм. То есть, если в ряду единиц есть значение 3,9 , то продолжением ряда в десятках будет значение 39, в сотнях – 390, в тысячах – 3,9 кОм и т.д. Количество номинальных значений в пределах серии определяется выбранной точностью. Самая распространенная серия Е24 содержит 24 базовых значений сопротивлений резисторов с точностью ±5%. На самом деле, распространение получили не 24, а 21 значение. В состав номинального ряда единиц серии входят значения: 1 ; 1,2 ; 1,5 ; 1,8 ; 2 ; 2,2 ; 2,4 ; 2,7 ; 3 ; 3,3 ; 3,6 ; 3,9 ; 4,3 ; 4,7 ; 5,1 ; 5,6 ; 6,2 ; 6,8 ; 7,5 ; 8,2 ; 9,1.
Сложнее с маркировкой самих резисторов
Резисторы малой мощности по геометрическим размерам тоже малы. Указать на его корпусе трехзначное значение номинала с буквой, или значение с запятой можно, но прочитать надпись будет сложно. Поэтому, пошли на хитрость, при указании номинала вместо десятичной запятой пишут букву, соответствующую единицам измерения (E или R единицы Ом, К - килоом, М - мегаом). Сотни единиц обозначают буквой стоящей впереди цифр. Например: 6K8 обозначает резистор, сопротивлением 6,8 кОм, 3R0 - 3 Ом, а надпись, обозначающая сотни М27 – 0,27 МОм, что соответствует 270 кОм и т. д. Таким образом, количество знаков (цифр и букв) на корпусе резистора сократилось до трёх.
Катушка зажигания
Индуктивный элемент (катушка индуктивности)
Условное графическое изображение катушки индуктивности приведено на рис. 2,а. Катушка – это пассивный элемент, характеризующийся индуктивностью. Для расчета индуктивности катушки необходимо рассчитать созданное ею магнитное поле.
Индуктивность определяется отношением потокосцепления к току, протекающему по виткам катушки,
.