- •1.Предел функции в точке. Ограниченность функции, имеющей конечный предел.
- •2. Единственность предела функции (док-во).
- •3.Бесконечно малые функции и их свойства.
- •4.Теорема о связи функции, имеющей предел и бесконечно малой функций. Арифметические свойства пределов функций (одно с док-ном).
- •5. Бесконечно малые и бесконечно большие функции. Связь между ними.
- •Бесконечно малая
- •Бесконечно большая
- •6. Сравнение бесконечно малых функций. Эквивалентные функции. Свойства эквивалентных функций. Условие эквивалентности.
- •Эквивалентность
- •7.Теорема о замене функций на эквивалентные при вычислении пределов.
- •8.Непрерывность функции в точке. Теорема о непрерывности сложной функции. Точки разрыва. Их классификация.
- •9.Свойства функций, непрерывных на отрезке.
- •10Производная. Её геометрический и механический смысл. Уравнение касательной и нормали к графику функции.
- •11Правила дифференцирования.
- •12Понятие дифференцируемой функции. Необходимое и достаточное условие дифференцируемости (док-во).
- •13.Дифференциал функции. И его геометрический смысл.
- •14.Производная сложной функции. Логарифмическое дифференцирование.
- •15.Теорема о существовании обратной функции. Производная обратной функции
- •16.Таблица производных. Вывод производной одной из функций.
- •17.Производные и дифференциалы высшего порядка. Инвариантность формы первого дифференциала.
- •18.Теорема Ролля. Её геометрический смысл.
- •19.Теорема Коши (с док-вом). Теорема Лагранжа (без док-ва). Геометрический смысл.
- •20.Правило Лопиталя.
- •21.Формула Тейлора с остаточным членом в форме Лагранжа.
- •22.Формула Тейлора с остаточным членом в Пеано.
- •23.Разложение элементарных функций по формуле Тейлора.
- •24.Необходимое и достаточное условие монотонности функции. Возрастание и убывание функции в точке и на отрезке. Условие возрастания (убывания) в точке.
- •Достаточные условия возрастания и убывания функции.
- •25.Экстремумы функции. Необходимое и достаточное условие экстремума.
- •26.Достаточное условие экстремума функции по второй производной.
- •27.Исследование поведения функции в точке с помощью производных высшего порядка
- •28.Наибольшее и наименьшее значение функции на отрезке
- •29. Направления выпуклости и точки перегиба.
- •30. Асимптоты. Вертикальная
- •Горизонтальная
- •Наклонная
- •Связь между наклонной и горизонтальной асимптотами
- •31.Общая схема исследования функции
5. Бесконечно малые и бесконечно большие функции. Связь между ними.
Бесконечно малая — числовая функция или последовательность, которая стремится к нулю.
Бесконечно большая — числовая функция или последовательность, которая стремится к бесконечности определённого знака.
Бесконечно малая
Последовательность называется бесконечно малой, если . Например, последовательность чисел — бесконечно малая.
Функция называется бесконечно малой в окрестности точки , если .
Функция называется бесконечно малой на бесконечности, если либо .
Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если , то , .
Бесконечно большая
Во
всех приведённых ниже формулах
бесконечность справа от равенства
подразумевается определённого знака
(либо «плюс», либо «минус»). То есть,
например, функция
,
неограниченная с обеих сторон, не
является бесконечно большой при
.
Последовательность
называется
бесконечно
большой, если
.
Функция
называется бесконечно
большой в окрестности точки
,
если
.
Функция
называется бесконечно
большой на бесконечности,
если
либо
.
6. Сравнение бесконечно малых функций. Эквивалентные функции. Свойства эквивалентных функций. Условие эквивалентности.
Как известно, сумма, разность и произведение двух б.м.ф. есть функция бесконечно малая. Отношение же двух б.м.ф. может вести себя различным образом: быть конечным числом, быть бесконечно большой функцией, бесконечно малой или вообще не стремиться ни к какому пределу.
Две б.м.ф. сравниваются между собой с помощью их отношения.
Пусть α=α(х) и ß=ß(х) есть б.м.ф. при х→хо, т. е.
и
1.
Если
=А 0
(АєR), то α и ß называются бесконечно
малыми одного порядка.
2. Если, =0, то α називатся бесконечно малой более высокого порядка , чем ß.
3. Если =∞, то α называется бесконечно малой более низкого порядка, чем ß.
4. Если не существует, то α и ß называются несравнимыми бесконечно малыми.
Отметим, что таковы же правила сравнения б.м.ф. при х →±∞, х →х0±0.
Эквивалентность
Б.м.
функции
и
называются эквивалентными или равносильными
б.м. одного порядка при
,
если
Обозначают:
при
.
7.Теорема о замене функций на эквивалентные при вычислении пределов.
8.Непрерывность функции в точке. Теорема о непрерывности сложной функции. Точки разрыва. Их классификация.
Непрерывность
функции в точке
Функция
называется непрерывной
в точке
,
если:
функция определена в точке и ее окрестности;
существует конечный предел функции в точке ;
это
предел равен значению функции в точке
,
т.е.
Пусть функция f(x) определена в некоторой окрестности O(x0) точки x0 (включая саму точку x0).
Функция f(x) называется непрерывной в точке x0, если существует limx → x0 f(x) , равный значению функции f(x) в этой точке:
|
f(x) = f(x0), |
(1) |
т.е.
|
O( f(x0) ) O(x0) : x O(x0) f(x) O( f(x0) ) |
|
Замечание. Равенство (1) можно записать в виде:
|
f(x) = f ( x ), |
|
т.е. под знаком непрерывной функции можно переходить к пределу.
Пусть Δx = x − x0 — приращение аргумента, Δy = f(x) − f(x0 ) — соответствующее приращение функции. Непрерывность сложной функции.
Введём
понятие сложной функции. Пусть
функции
и
определены
на множестве X и Y соответственно,
причём множество значений функции
содержится
в области определения функции f Тогда
функцию, принимающую при каждом
значение
,
называют сложной функцией или суперпозицией
(композицией) функций
и f и
обозначают
.
Теорема.
Если функция z=f(y) непрерывна
в точке
,
а функция
непрерывна
в точке
,
причём
,
то в некоторой окрестности точки
определена
сложная функция
,
и эта функция непрерывна в точке
.
○ Пусть
задано произвольное число
.
В силу непрерывности функции f в
точке
существует
число
такое,
что
и
(2)
где
.
В
силу непрерывности функции
в
точке
для
найденного в (2) числа
можно
указать число
такое,
что
(2')
Из
условий (2) и (2') следует, что на
множестве
определена
сложная функция
,
причём
,
где
,
т.е.
.
Это
означает, в силу определения непрерывности,
что функция
непрерывна
в точке
.●
Точки
разрыва и их классификация.
Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0 является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной.
Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом.
Если
односторонний предел (см. выше)
,
то функция называется непрерывной
справа.
|
|
|
|
х0
Если
односторонний предел (см. выше)
,
то функция называется непрерывной
слева.
|
|
|
|
х0
Определение. Точка х0 называется точкой разрыва функции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке.
Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.
Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее.
Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют устранимой точкой разрыва, но подробнее об этом поговорим ниже.
Определение. Точка х0 называется точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен.
Пример. Функция Дирихле (Дирихле Петер Густав(1805-1859) – немецкий математик, член- корреспондент Петербургской АН 1837г)
не является непрерывной в любой точке х0.
Пример. Функция f(x)
=
имеет
в точке х0 = 0 точку разрыва 2 –
го рода, т.к.
