Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по эконометрике.docx
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
921.4 Кб
Скачать

23.Понятие и причины автокорреляции остатков. Последствия автокорреляции остатков. Обнаружение автокорреляции остатков.

Понятие.

  • Автокорреляция -- это взаимосвязь последовательных элементов временного или пространственного ряда данных. В эконометрических исследованиях часто возникают и такие ситуации, когда дисперсия остатков постоянная, но наблюдается их ковариация. Это явление называют автокорреляцией остатков.

  • Автокорреляция остатков чаще всего наблюдается тогда, когда эконометрическая модель строится на основе временных рядов. Если существует корреляция между последовательными значениями некоторой независимой переменной, то будет наблюдаться и корреляция последовательных значений остатков. Автокорреляция может быть также следствием ошибочной спецификации эконометрической модели. Кроме того, наличие автокорреляции остатков может означать, что необходимо ввести в модель новую независимую переменную.

  • Автокорреляция в остатках есть нарушение одной из основных предпосылок МНК - предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении к оценке параметров модели обобщенного МНК. При построении уравнения множественной регрессии по временным рядам данных возникает также проблема мультиколлинеарности факторов, входящих в уравнение регрессии, в случае если эти факторы содержат тенденцию.

Причины:

Среди основных причин, вызывающих появление автокорреляции, можно выделить ошибки спецификации, инерцию в изменении экономических показателей, эффект паутины, сглаживание данных. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводит к системным отклонениям точек наблюдений от линии регрессии, что может обусловить автокорреляцию. Инерция. Многие экономические показатели (например, инфляция, безработица, ВНП и т.п.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Действительно, экономический подъем приводит к росту занятости, сокращению инфляции, увеличению ВНП и т.д. Этот рост продолжается до тех пор, пока изменение конъюктуры рынка и ряда экономических характеристик не приведет к замедлению роста, затем остановке и движению вспять рассматриваемых показателей. В любом случае эта трансформация происходит не мгновенно, а обладает определенной инертностью. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом). Например, предложение сельскохозяйственной продукции реагирует на изменение цены с запаздыванием (равным периоду созревания урожая). Большая цена сельскохозяйственной продукции в прошедшем году вызовет (скорее всего)  ее перепроизводство в текущем году, а следовательно, цена на нее снизится и т.д. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его подынтервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может послужить причиной автокорреляции.

Последствия.Если пренебречь автокорреляцией остатков и оценить параметры модели МНК, то придем к таким трем следствиям.

  • 1. Оценки параметров модели могут быть несмещенными, но неэффективными, то есть выборочные дисперсии вектора оценокА могут быть неоправданно большими.

  • 2. Поскольку выборочные дисперсии исчисляются не по уточненным формулам, то статистические критерии t- и F-статистики, которые найдены для линейной модели, практически не могут быть использованы в дисперсионном анализе.

  • 3. Неэффективность оценок параметров эконометрической модели приводит, как правило, к неэффективным прогнозам, то есть прогнозам с очень большой выборочной дисперсией.