- •12. Линейная модель множественной регрессии
- •13.Экономический смысл коэффициентов линейного и степенного уравнений регрессии
- •14.Нелинейная регрессия. Нелинейные модели и их линеаризация
- •15.Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •16.Предпосылки применения метода наименьших квадратов (мнк)
- •17.Оценка параметров парной регрессионной модели методом наименьших квадратов
- •18.Оценка параметров парной регрессионной модели методом наименьших квадратов. Система нормальных уравнений
- •19.Теорема Гаусса - Маркова
- •20.Метод наименьших квадратов (мнк) и смысл выходной статистической информации сервиса Регрессия
- •21.Свойства оценок метода наименьших квадратов (мнк)
- •22.Метод наименьших квадратов (мнк) и его реализация с использованием сервиса “Поиск решения”
- •22.Мнк и его реализация с использованием сервиса «Поиск решений»
- •23.Понятие и причины автокорреляции остатков. Последствия автокорреляции остатков. Обнаружение автокорреляции остатков.
- •24.Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений
- •25.Анализ экономических объектов и прогнозирование с помощью модели множественной регрессии
- •26. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений
- •27.Отражение в модели влияния неучтённых факторов. Предпосылки теоремы Гаусса-Маркова.
- •28.Проверка выполнения предпосылок мнк
- •29.Что такое стационарный процесс
- •30.Оценка качества моделей прогнозирования. Оценка точности
- •1) Проверка равенства мат ожидания нулю
- •2)Проверка условий случайности возникновения отдельных отклонений от тренда:
- •3)Проверка независимости(отсутствие автокорреляции)
- •31. Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений
- •32. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки и последствия мультиколлинеарности
- •34. Фиктивные переменные: определение, назначение, типы
- •35. Оценивание линейной модели множественной регрессии (мнк) в Excel.
- •36. Отбор факторов при построении множественной регрессии. Процедура пошагового отбора переменных
- •37. Регрессионные модели с фиктивными переменными
- •38. Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel.
- •39. Фиктивная переменная сдвига: назначение; спецификация
- •40. Принципы спецификации эконометрических моделей
- •41. Основные числовые хар-ки вектора остатков в классической множественной регрессионной модели
- •42. Этапы построения эконометрических моделей
- •43. Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии
- •44. Нелинейная модель множественной регрессии Кобба-Дугласа.
- •45. Модели с бинарными фиктивными переменными
- •46.Метод наименьших квадратов: алгоритм метода; условия применения
- •47. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности.
- •48. Прогноз по временному ряду с сезонными колебаниями
- •50. Модели временных рядов. Свойства рядов цен на бирже
- •51.Матричная форма метода наименьших квадратов.
- •52.Условия идентификации структурной формы системы одновременных уравнений
- •Нелинейная регрессия
- •54. Оценка влияния отдельных факторов на зависимую переменную на основе модели (коэффициенты эластичности, - коэффициенты).
- •55. Оценивание линейной модели множественной регрессии в Excel
- •56. Системы эконометрических уравнений
16.Предпосылки применения метода наименьших квадратов (мнк)
Теорема Гаусса-Маркова формулирует условия, при которых МНК позволяет
получить наилучшие оценки параметров линейной модели множественной регрессии.
Теорема начинается с описания условий, которые накладываются на вектор
случайных возмущений. Эти условия принято называть предпоссылками теоремы Гаусса- Маркова.
И так. Если:
1.Математическое ожидание случайных возмущений во всех наблюдениях равно нулю: M(Ū|X)=0
2. Дисперсия случайных возмущений во всех наблюдениях одинакова и равна константе u: 2(Ū|X)= u2
3.Ковариация между парами случайных возмущений в наблюдениях равны нулю
(случайные возмущения в наблюдениях независимы): cov(ui,uj)=0 (i≠j)
4.Ковариация
между вектором регрессоров и вектором
случайных переменных равнa
нулю( регрессоры и случайные возмущения
независимы): cov(
)=0
17.Оценка параметров парной регрессионной модели методом наименьших квадратов
Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая описывается моделью регрессии вида: yi=a+b*xi
В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов.Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).
МНК
позволяет получить такие оценки
параметров a и b, при которых сумма
квадратов отклонений фактических
значений результативного признака y от
расчетных (теоретических)
минимальна:
Для того чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю. Тогда мы получаем следующую систему нормальных уравнений для оценки параметров a и b
Решая систему нормальных уравнений либо методом последовательного исключения переменных, либо методом определителей, найдем искомые оценки параметров a и b. Можно воспользоваться следующими формулами для a и b:
Эта формула получена из первого уравнения системы, если все его члены разделить на n:
,
где cov(x,y) — ковариация признаков; σх2—
дисперсия признака х. Поскольку
,
получим следующую формулу расчета
оценки параметра b
Таким
образом:
Свойство несмещенности оценок состоит в том, что математическое ожидание оценки должно быть равно истинному значению параметра.
Свойство состоятельности оценок состоит в том, что с увеличением наблюдений оценка становится более надежной в вероятностном смысле.
Оценка называется эффективной, если она имеет минимальную дисперсию по сравнению с любыми другими оценками этого параметра в классе выбранных процедур.
18.Оценка параметров парной регрессионной модели методом наименьших квадратов. Система нормальных уравнений
Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая описывается моделью регрессии вида: yi=a+b*xi
В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).
МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака y от расчетных (теоретических) минимальна:
Для того чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю. Тогда мы получаем следующую систему нормальных уравнений для оценки параметров a и b
Решая систему нормальных уравнений либо методом последовательного исключения переменных, либо методом определителей, найдем искомые оценки параметров a и b. Можно воспользоваться следующими формулами для a и b:
Эта формула получена из первого уравнения системы, если все его члены разделить на n:
, где cov(x,y) — ковариация признаков; σх2— дисперсия признака х. Поскольку , получим следующую формулу расчета оценки параметра b
Таким образом:
Свойство несмещенности оценок состоит в том, что математическое ожидание оценки должно быть равно истинному значению параметра.
Свойство состоятельности оценок состоит в том, что с увеличением наблюдений оценка становится более надежной в вероятностном смысле.
Оценка называется эффективной, если она имеет минимальную дисперсию по сравнению с любыми другими оценками этого параметра в классе выбранных процедур.
