Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по эконометрике.docx
Скачиваний:
6
Добавлен:
01.05.2025
Размер:
921.4 Кб
Скачать

50. Модели временных рядов. Свойства рядов цен на бирже

Выделяют 3 соновн. класса моделей, к. применяются для анализа и прогноза. Модели временных рядов. К этому классу относится сл. модели: 1. Модель тренда (тенденция, развитие) Y(t)= T(t) + E(t) (1.1), Где T(t)-временной тренд заданного параметрич. Вида, E(t)-случайная компонента

2. Модель сезонности, Y(t)= S(t) + E(t) (1.2), Где S(t)-сезонная компонента

3.Модель тренда и сезонности: А) аудитивная, Y(t)= T(t) + E(t) +S(t) (1,3), Б) мультипликативная, S(t) (1.4) E(t)Y(t)= T(t) К моделям временных рядов относится множество более сложных моделей, таких как модели адаптивного прогноза, модели авторегрессии, скользящей средней и т. д. Их общей чертой яв-ся то, что они объясн-т поведение временного ряда, исходя из его предыдущих значений.

51.Матричная форма метода наименьших квадратов.

Запишем наблюдения в каждой точке i с учетом (3.1):

(3.4)

Введем в рассмотрение матрицу плана наблюдений или матрицу базисных функций (не путать с вектором ). (3.5)

Тогда при условии линейного вхождения вектора параметров в модель, получим:

(3.6)

Справедливость уравнения (3.6) проверяется переводом уравнения (3.6) в скалярную форму по правилу умножения матрицы X на вектор .

В уравнении наблюдений (3.6)

= (b0,b1,….,bj,….bn) - nмерный вектор оцениваемых параметров;

= (e0,e1,….,ej,….en); - Nмерный вектор остатков;

= (y0,y1,….,yj,….yn); - Nмерный вектор наблюдений.

Замечание: Если структура модели нелинейна по , т.е. входит в базисную функцию, то записать уравнение (3.6) невозможно и классический метод наименьших квадратов непримерим.

3.3.2.Нормальные уравнения регрессии и формула для параметров уравнения

Используем известную формулу из матричной алгебры:

(3.7)

Тогда, опуская стрелки с учетом того, что получаем:

(3.8)

(3.9)

Система нормальных уравнений запишется в виде:

(3.10)

где (XTX) – матрица нормальных уравнений.

Пусть обратная матрица (XTX)-1 существует (она называется информационной матрицей Фишера). Тогда получим явную матричную формулу для оценки коэффициентов (параметров) уравнения регрессии:

Если det(XTX)-1=0, то матрица нормальных уравнений необратима и вычислить вектор параметров нельзя.

Если det(XTX)-10, но очень мал, то обращаемая матрица плохо обусловлена. Возникает вычислительные проблемы обращения матриц большей размерности.

52.Условия идентификации структурной формы системы одновременных уравнений

Введём следующие обозначения:

N – количество предопределённых переменных структурной формы системы одновременных уравнений;

n – количество предопределённых переменных в уравнении, проверяемом на идентифицируемость;

M – количество эндогенных переменных структурной формы системы одновременных уравнений;

m – количество эндогенных переменных в уравнении, проверяемом на идентифицируемость;

K – матрица коэффициентов при переменных, не входящих в уравнение, проверяемое на идентифицируемость.

Необходимые и достаточные условия идентификации применяются только к структурной форме системы одновременных уравнений.

Первое необходимое условие идентифицируемости уравнения структурной формы системы одновременных уравнений.

Уравнение структурной формы системы одновременных уравнений идентифицируемо в том случае, если оно исключает хотя бы N-1 предопределённую переменную:

(N–n)+(M–m)>=N–1.

Второе необходимое условие идентифицируемости уравнения структурной формы системы одновременных уравнений.

Уравнение структурной формы системы одновременных уравнений идентифицируемо в том случае, если количество предопределённых переменных, не входящих в данное уравнение, будет не меньше числа эндогенных переменных этого уравнения минус единица:

N–n>=m–1.

Достаточное условие идентифицируемости уравнения структурной формы системы одновременных уравнений.

Уравнение структурной формы системы одновременных уравнений идентифицируемо в том случае, если ранг матрицы K равен (N-1).

Рангом матрицы называется размер наибольшей её квадратной подматрицы, определитель которой не равен нулю.

На основе перечисленных условий идентификации, можно сформулировать необходимые и достаточные условия идентифицируемости уравнения структурной формы системы одновременных уравнений:

1) уравнение структурной формы системы одновременных уравнений считается сверхидентифицированным, если M–m>n–1  и ранг матрицы K равен (N-1);

2) уравнение структурной формы системы одновременных уравнений считается точно идентифицированным, если M–m=n–1 и ранг матрицы K равен (N-1);

3) уравнение структурной формы системы одновременных уравнений считается неидентифицированным, если M–m>=n–1 и ранг матрицы K меньше (N-1);

4) уравнение структурной формы системы одновременных уравнений считается неидентифицированным, если M–m<n–1< em="">.</n–1<>

В качестве примера можно рассмотрим процесс идентификации структурной формы модели спроса и предложения. Данная модель включает в себя три уравнения:

1) уравнение предложения:

2) уравнение спроса:

3) тождество равновесия:

QSt = Qdt

С учётом тождества равновесия, модель спроса-предложения может быть записана в виде:

Количество эндогенных переменных данной модели M равно двум (Pt и Qt), т.е. M=2. Количество предопределённых переменных данной модели N равно двум (Pt–1 и It), т.е. N=2.

Проверим выполнение первого необходимого условия идентифицируемости.

Для функции спроса выполняются равенства m=2 и n=1. Отсюда

(N–n)+(M–m)=(2–1)+(2–2)+(2–2)=1=(N–1)=1,

следовательно, уравнение спроса является точно идентифицированным.

Для функции предложения выполняются равенства m=2 и n=1. Отсюда

(N–n)+(M–m)=(2–1)+(2–2)+(2–2)=1=(N–1)=1,

следовательно, уравнение предложения является точно идентифицированным.

Проверим выполнение второго необходимого условия идентифицируемости.

Для функции спроса выполняются равенства m=2 и n=1. Отсюда

N–n=2–1=1=m–1=2–1=1,

следовательно, уравнение спроса является точно идентифицированным.

Для функции предложения выполняются равенства m=2 и n=1. Отсюда

N–n=2–1=1=m–1=2–1=1,

следовательно, уравнение предложения является точно идентифицированным.

Проверим выполнение достаточного условия идентифицируемости, заключающееся в том, чтобы хотя бы один из коэффициентов матрицы K не был равен нулю, т.к. M–1=1.

В первом уравнении модели исключена переменная It и матрица K=[b2]. Т.к. определитель данной матрицы не равен нулю, следовательно, rank=1=M–1 и уравнение является идентифицированным.

Во втором уравнении исключена переменная Pt–1 и матрица К=[a2]. Т.к. определитель данной матрицы не равен нулю, следовательно, rank=1=M–1 и уравнение является идентифицированным.

Т.к. уравнения спроса и предложения являются точно идентифицированными, то и система уравнений в целом точно идентифицирована.

Приведённая форма системы уравнений модели спроса-предложения:

53.Нелинейная регрессия. Нелинейные модели и их линеаризация.

Регрессионные модели с переменной структурой (фиктивные переменные).