
- •12. Линейная модель множественной регрессии
- •13.Экономический смысл коэффициентов линейного и степенного уравнений регрессии
- •14.Нелинейная регрессия. Нелинейные модели и их линеаризация
- •15.Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •16.Предпосылки применения метода наименьших квадратов (мнк)
- •17.Оценка параметров парной регрессионной модели методом наименьших квадратов
- •18.Оценка параметров парной регрессионной модели методом наименьших квадратов. Система нормальных уравнений
- •19.Теорема Гаусса - Маркова
- •20.Метод наименьших квадратов (мнк) и смысл выходной статистической информации сервиса Регрессия
- •21.Свойства оценок метода наименьших квадратов (мнк)
- •22.Метод наименьших квадратов (мнк) и его реализация с использованием сервиса “Поиск решения”
- •22.Мнк и его реализация с использованием сервиса «Поиск решений»
- •23.Понятие и причины автокорреляции остатков. Последствия автокорреляции остатков. Обнаружение автокорреляции остатков.
- •24.Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений
- •25.Анализ экономических объектов и прогнозирование с помощью модели множественной регрессии
- •26. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений
- •27.Отражение в модели влияния неучтённых факторов. Предпосылки теоремы Гаусса-Маркова.
- •28.Проверка выполнения предпосылок мнк
- •29.Что такое стационарный процесс
- •30.Оценка качества моделей прогнозирования. Оценка точности
- •1) Проверка равенства мат ожидания нулю
- •2)Проверка условий случайности возникновения отдельных отклонений от тренда:
- •3)Проверка независимости(отсутствие автокорреляции)
- •31. Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений
- •32. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки и последствия мультиколлинеарности
- •34. Фиктивные переменные: определение, назначение, типы
- •35. Оценивание линейной модели множественной регрессии (мнк) в Excel.
- •36. Отбор факторов при построении множественной регрессии. Процедура пошагового отбора переменных
- •37. Регрессионные модели с фиктивными переменными
- •38. Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel.
- •39. Фиктивная переменная сдвига: назначение; спецификация
- •40. Принципы спецификации эконометрических моделей
- •41. Основные числовые хар-ки вектора остатков в классической множественной регрессионной модели
- •42. Этапы построения эконометрических моделей
- •43. Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии
- •44. Нелинейная модель множественной регрессии Кобба-Дугласа.
- •45. Модели с бинарными фиктивными переменными
- •46.Метод наименьших квадратов: алгоритм метода; условия применения
- •47. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности.
- •48. Прогноз по временному ряду с сезонными колебаниями
- •50. Модели временных рядов. Свойства рядов цен на бирже
- •51.Матричная форма метода наименьших квадратов.
- •52.Условия идентификации структурной формы системы одновременных уравнений
- •Нелинейная регрессия
- •54. Оценка влияния отдельных факторов на зависимую переменную на основе модели (коэффициенты эластичности, - коэффициенты).
- •55. Оценивание линейной модели множественной регрессии в Excel
- •56. Системы эконометрических уравнений
50. Модели временных рядов. Свойства рядов цен на бирже
Выделяют 3 соновн. класса моделей, к. применяются для анализа и прогноза. Модели временных рядов. К этому классу относится сл. модели: 1. Модель тренда (тенденция, развитие) Y(t)= T(t) + E(t) (1.1), Где T(t)-временной тренд заданного параметрич. Вида, E(t)-случайная компонента
2. Модель сезонности, Y(t)= S(t) + E(t) (1.2), Где S(t)-сезонная компонента
3.Модель тренда и сезонности: А) аудитивная, Y(t)= T(t) + E(t) +S(t) (1,3), Б) мультипликативная, S(t) (1.4) E(t)Y(t)= T(t) К моделям временных рядов относится множество более сложных моделей, таких как модели адаптивного прогноза, модели авторегрессии, скользящей средней и т. д. Их общей чертой яв-ся то, что они объясн-т поведение временного ряда, исходя из его предыдущих значений.
51.Матричная форма метода наименьших квадратов.
Запишем наблюдения в каждой точке i с учетом (3.1):
(3.4)
Введем
в рассмотрение матрицу плана наблюдений
или матрицу базисных функций (не путать
с вектором
).
(3.5)
Тогда
при условии линейного вхождения вектора
параметров
в модель, получим:
(3.6)
Справедливость уравнения (3.6) проверяется переводом уравнения (3.6) в скалярную форму по правилу умножения матрицы X на вектор .
В уравнении наблюдений (3.6)
= (b0,b1,….,bj,….bn) - n – мерный вектор оцениваемых параметров;
=
(e0,e1,….,ej,….en);
- N
– мерный
вектор остатков;
=
(y0,y1,….,yj,….yn);
- N
– мерный
вектор наблюдений.
Замечание: Если структура модели нелинейна по , т.е. входит в базисную функцию, то записать уравнение (3.6) невозможно и классический метод наименьших квадратов непримерим.
3.3.2.Нормальные уравнения регрессии и формула для параметров уравнения
Используем известную формулу из матричной алгебры:
(3.7)
Тогда,
опуская стрелки с учетом того, что
получаем:
(3.8)
(3.9)
Система нормальных уравнений запишется в виде:
(3.10)
где (XTX) – матрица нормальных уравнений.
Пусть обратная матрица (XTX)-1 существует (она называется информационной матрицей Фишера). Тогда получим явную матричную формулу для оценки коэффициентов (параметров) уравнения регрессии:
Если det(XTX)-1=0, то матрица нормальных уравнений необратима и вычислить вектор параметров нельзя.
Если det(XTX)-10, но очень мал, то обращаемая матрица плохо обусловлена. Возникает вычислительные проблемы обращения матриц большей размерности.
52.Условия идентификации структурной формы системы одновременных уравнений
Введём следующие обозначения:
N – количество предопределённых переменных структурной формы системы одновременных уравнений;
n – количество предопределённых переменных в уравнении, проверяемом на идентифицируемость;
M – количество эндогенных переменных структурной формы системы одновременных уравнений;
m – количество эндогенных переменных в уравнении, проверяемом на идентифицируемость;
K – матрица коэффициентов при переменных, не входящих в уравнение, проверяемое на идентифицируемость.
Необходимые и достаточные условия идентификации применяются только к структурной форме системы одновременных уравнений.
Первое необходимое условие идентифицируемости уравнения структурной формы системы одновременных уравнений.
Уравнение структурной формы системы одновременных уравнений идентифицируемо в том случае, если оно исключает хотя бы N-1 предопределённую переменную:
(N–n)+(M–m)>=N–1.
Второе необходимое условие идентифицируемости уравнения структурной формы системы одновременных уравнений.
Уравнение структурной формы системы одновременных уравнений идентифицируемо в том случае, если количество предопределённых переменных, не входящих в данное уравнение, будет не меньше числа эндогенных переменных этого уравнения минус единица:
N–n>=m–1.
Достаточное условие идентифицируемости уравнения структурной формы системы одновременных уравнений.
Уравнение структурной формы системы одновременных уравнений идентифицируемо в том случае, если ранг матрицы K равен (N-1).
Рангом матрицы называется размер наибольшей её квадратной подматрицы, определитель которой не равен нулю.
На основе перечисленных условий идентификации, можно сформулировать необходимые и достаточные условия идентифицируемости уравнения структурной формы системы одновременных уравнений:
1) уравнение структурной формы системы одновременных уравнений считается сверхидентифицированным, если M–m>n–1 и ранг матрицы K равен (N-1);
2) уравнение структурной формы системы одновременных уравнений считается точно идентифицированным, если M–m=n–1 и ранг матрицы K равен (N-1);
3) уравнение структурной формы системы одновременных уравнений считается неидентифицированным, если M–m>=n–1 и ранг матрицы K меньше (N-1);
4) уравнение структурной формы системы одновременных уравнений считается неидентифицированным, если M–m<n–1< em="">.</n–1<>
В качестве примера можно рассмотрим процесс идентификации структурной формы модели спроса и предложения. Данная модель включает в себя три уравнения:
1) уравнение предложения:
2) уравнение спроса:
3) тождество равновесия:
QSt = Qdt
С учётом тождества равновесия, модель спроса-предложения может быть записана в виде:
Количество эндогенных переменных данной модели M равно двум (Pt и Qt), т.е. M=2. Количество предопределённых переменных данной модели N равно двум (Pt–1 и It), т.е. N=2.
Проверим выполнение первого необходимого условия идентифицируемости.
Для функции спроса выполняются равенства m=2 и n=1. Отсюда
(N–n)+(M–m)=(2–1)+(2–2)+(2–2)=1=(N–1)=1,
следовательно, уравнение спроса является точно идентифицированным.
Для функции предложения выполняются равенства m=2 и n=1. Отсюда
(N–n)+(M–m)=(2–1)+(2–2)+(2–2)=1=(N–1)=1,
следовательно, уравнение предложения является точно идентифицированным.
Проверим выполнение второго необходимого условия идентифицируемости.
Для функции спроса выполняются равенства m=2 и n=1. Отсюда
N–n=2–1=1=m–1=2–1=1,
следовательно, уравнение спроса является точно идентифицированным.
Для функции предложения выполняются равенства m=2 и n=1. Отсюда
N–n=2–1=1=m–1=2–1=1,
следовательно, уравнение предложения является точно идентифицированным.
Проверим выполнение достаточного условия идентифицируемости, заключающееся в том, чтобы хотя бы один из коэффициентов матрицы K не был равен нулю, т.к. M–1=1.
В первом уравнении модели исключена переменная It и матрица K=[b2]. Т.к. определитель данной матрицы не равен нулю, следовательно, rank=1=M–1 и уравнение является идентифицированным.
Во втором уравнении исключена переменная Pt–1 и матрица К=[a2]. Т.к. определитель данной матрицы не равен нулю, следовательно, rank=1=M–1 и уравнение является идентифицированным.
Т.к. уравнения спроса и предложения являются точно идентифицированными, то и система уравнений в целом точно идентифицирована.
Приведённая форма системы уравнений модели спроса-предложения:
53.Нелинейная регрессия. Нелинейные модели и их линеаризация.
Регрессионные модели с переменной структурой (фиктивные переменные).