Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по эконометрике.docx
Скачиваний:
8
Добавлен:
01.05.2025
Размер:
921.4 Кб
Скачать

44. Нелинейная модель множественной регрессии Кобба-Дугласа.

Наиболее часто применяется двухфакторная форма функции Кобба-Дугласа f(K,L):

Q=A*Ka*Lβ,

где Q – объём выпущенной продукции (в стоимостном или натуральном выражении);

K – объём основного капитала или основных фондов;

L – объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней).

A,a,β – неизвестные числовые параметры производственной функции, которые подчиняются условиям:

1) 0≤а≤1;

2) 0≤β≤1;

3) A›0;

4) a+β=1.

На основании четвёртного условия a+β=1, функция Кобба-Дугласа может быть представлена в виде:

Q=A*Ka*L1-а.

Данная производственная функция позволяет объяснить уровень совокупного выпуска Q количествами затраченного капитала K и труда L основных факторов производства.

На двухфакторную функцию Кобба-Дугласа накладываются определённые ограничения, которые необходимо учитывать при спецификации модели:

1)

2)

3)

4)

5)

6)

Первое и второе ограничения означают, что объём выпускаемой продукции увеличивается при постоянном значении одного из факторов и росте другого фактора. Однако если один из факторов производства фиксирован, а другой фактор возрастает, то каждая дополнительная (предельная) единица возрастающего фактора менее полезна (с точки зрения прироста выпуска продукции), чем предыдущая единица.

Третье и четвёртное ограничения означают, что при фиксированном значении одного из факторов последовательное увеличение другого фактора будет приводить к сокращению прироста значения Q.

Пятое и шестое ограничения означают, что каждый из факторов производства необходим в том смысле, что если один из факторов равен нулю (K=0 или L=0), то и объём производства также равен нулю Q=0.

45. Модели с бинарными фиктивными переменными

Термин “фиктивные переменные” используется как противоположность “значащим” переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная — это индикаторная переменная, отражающая качественную характеристику. Чаще всего применяются бинарные фиктивные переменные, принимающие два значения, 0 и 1, в зависимости от определенного условия. Например, в результате опроса группы людей 0 может означать, что опрашиваемый - мужчина, а 1 - женщина. Могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону.

К фиктивным переменным иногда относят регрессор, состоящий из одних единиц (т.е. константу, свободный член), а также временной тренд.

Фиктивные переменные, будучи экзогенными, не создают каких-либо трудностей при применении ОМНК. Фиктивные переменные являются эффективным инструментом построения регрессионных моделей и проверки гипотез.

46.Метод наименьших квадратов: алгоритм метода; условия применения

В матем статистике методы получения наилучшего приближ к исходным данным в виде аппроксимирующей функции назыв регрессионным анализом. Его основн задачами явл установление завис-сти между переменными и оценка(прогноз)значений завис переменной.

При оценивании пар-ров регр.моделей наиболее часто применяется МНК. Его оценки обладают такими стат. св-вами: несмещенность, состоятельность, эффективность. Достоинство МНК: простота мат.выводов и вычислит-х процедур.

Пусть имеем выборку из 4-х точек (n=4):

P1 =(x1, y1),P2 =(x2, y2), P3 =(x3, y3), P4 =(x4, y4)

Предполагаем, что существует теоретическая прямая, которая наилучшим образом проходит через них. Задача: оценить с некоторой точностью, как может проходить эта прямая

И так, оценки параметров модели парной регрессии согласно МНК будем искать из условия:

Задача оценки параметров парной регр.модели МНК сводится к задаче определения экстремума (минимума) ф-ии 2х аргументов

Система называется системой нормальных уравнений для вычисления оценок параметров уравнения парной регрессии. Упростим систему нормальных уравнений.

Убеждаемся, что решение системы уравнений будет соответствовать минимуму функции.

Для этого вычисляем значения вторых частных производных функции

Для решения системы выразим из первого уравнения ã0, подставим его во второе уравнение. Получим:

П роанализируем выражение. Для этого вычислим COV(x,y) и σ2(x).Получим:

Проверим выполнение условия несмещенности для оценки. Для этого вычислим

числитель выражения .Получаем:

Вычислим дисперсии параметров уравнения регрессии и дисперсию прогнозирования эндогенной переменной.

С помощью МНК получили

1)Оценки параметров уравнения регрессии, по крайней мере, состоятельными

2)Если случайное возмущение подчиняется нормальному закону распределения, то оценки параметров модели несмещенные и эффективные

3)Нет необходимости в знании закона распределения случайных возмущений.