- •12. Линейная модель множественной регрессии
- •13.Экономический смысл коэффициентов линейного и степенного уравнений регрессии
- •14.Нелинейная регрессия. Нелинейные модели и их линеаризация
- •15.Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •16.Предпосылки применения метода наименьших квадратов (мнк)
- •17.Оценка параметров парной регрессионной модели методом наименьших квадратов
- •18.Оценка параметров парной регрессионной модели методом наименьших квадратов. Система нормальных уравнений
- •19.Теорема Гаусса - Маркова
- •20.Метод наименьших квадратов (мнк) и смысл выходной статистической информации сервиса Регрессия
- •21.Свойства оценок метода наименьших квадратов (мнк)
- •22.Метод наименьших квадратов (мнк) и его реализация с использованием сервиса “Поиск решения”
- •22.Мнк и его реализация с использованием сервиса «Поиск решений»
- •23.Понятие и причины автокорреляции остатков. Последствия автокорреляции остатков. Обнаружение автокорреляции остатков.
- •24.Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений
- •25.Анализ экономических объектов и прогнозирование с помощью модели множественной регрессии
- •26. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений
- •27.Отражение в модели влияния неучтённых факторов. Предпосылки теоремы Гаусса-Маркова.
- •28.Проверка выполнения предпосылок мнк
- •29.Что такое стационарный процесс
- •30.Оценка качества моделей прогнозирования. Оценка точности
- •1) Проверка равенства мат ожидания нулю
- •2)Проверка условий случайности возникновения отдельных отклонений от тренда:
- •3)Проверка независимости(отсутствие автокорреляции)
- •31. Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений
- •32. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки и последствия мультиколлинеарности
- •34. Фиктивные переменные: определение, назначение, типы
- •35. Оценивание линейной модели множественной регрессии (мнк) в Excel.
- •36. Отбор факторов при построении множественной регрессии. Процедура пошагового отбора переменных
- •37. Регрессионные модели с фиктивными переменными
- •38. Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel.
- •39. Фиктивная переменная сдвига: назначение; спецификация
- •40. Принципы спецификации эконометрических моделей
- •41. Основные числовые хар-ки вектора остатков в классической множественной регрессионной модели
- •42. Этапы построения эконометрических моделей
- •43. Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии
- •44. Нелинейная модель множественной регрессии Кобба-Дугласа.
- •45. Модели с бинарными фиктивными переменными
- •46.Метод наименьших квадратов: алгоритм метода; условия применения
- •47. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности.
- •48. Прогноз по временному ряду с сезонными колебаниями
- •50. Модели временных рядов. Свойства рядов цен на бирже
- •51.Матричная форма метода наименьших квадратов.
- •52.Условия идентификации структурной формы системы одновременных уравнений
- •Нелинейная регрессия
- •54. Оценка влияния отдельных факторов на зависимую переменную на основе модели (коэффициенты эластичности, - коэффициенты).
- •55. Оценивание линейной модели множественной регрессии в Excel
- •56. Системы эконометрических уравнений
44. Нелинейная модель множественной регрессии Кобба-Дугласа.
Наиболее часто применяется двухфакторная форма функции Кобба-Дугласа f(K,L):
Q=A*Ka*Lβ,
где Q – объём выпущенной продукции (в стоимостном или натуральном выражении);
K – объём основного капитала или основных фондов;
L – объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней).
A,a,β – неизвестные числовые параметры производственной функции, которые подчиняются условиям:
1) 0≤а≤1;
2) 0≤β≤1;
3) A›0;
4) a+β=1.
На основании четвёртного условия a+β=1, функция Кобба-Дугласа может быть представлена в виде:
Q=A*Ka*L1-а.
Данная производственная функция позволяет объяснить уровень совокупного выпуска Q количествами затраченного капитала K и труда L основных факторов производства.
На двухфакторную функцию Кобба-Дугласа накладываются определённые ограничения, которые необходимо учитывать при спецификации модели:
1)
2)
3)
4)
5)
6)
Первое и второе ограничения означают, что объём выпускаемой продукции увеличивается при постоянном значении одного из факторов и росте другого фактора. Однако если один из факторов производства фиксирован, а другой фактор возрастает, то каждая дополнительная (предельная) единица возрастающего фактора менее полезна (с точки зрения прироста выпуска продукции), чем предыдущая единица.
Третье и четвёртное ограничения означают, что при фиксированном значении одного из факторов последовательное увеличение другого фактора будет приводить к сокращению прироста значения Q.
Пятое и шестое ограничения означают, что каждый из факторов производства необходим в том смысле, что если один из факторов равен нулю (K=0 или L=0), то и объём производства также равен нулю Q=0.
45. Модели с бинарными фиктивными переменными
Термин “фиктивные переменные” используется как противоположность “значащим” переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная — это индикаторная переменная, отражающая качественную характеристику. Чаще всего применяются бинарные фиктивные переменные, принимающие два значения, 0 и 1, в зависимости от определенного условия. Например, в результате опроса группы людей 0 может означать, что опрашиваемый - мужчина, а 1 - женщина. Могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону.
К фиктивным переменным иногда относят регрессор, состоящий из одних единиц (т.е. константу, свободный член), а также временной тренд.
Фиктивные переменные, будучи экзогенными, не создают каких-либо трудностей при применении ОМНК. Фиктивные переменные являются эффективным инструментом построения регрессионных моделей и проверки гипотез.
46.Метод наименьших квадратов: алгоритм метода; условия применения
В матем статистике методы получения наилучшего приближ к исходным данным в виде аппроксимирующей функции назыв регрессионным анализом. Его основн задачами явл установление завис-сти между переменными и оценка(прогноз)значений завис переменной.
При оценивании пар-ров регр.моделей наиболее часто применяется МНК. Его оценки обладают такими стат. св-вами: несмещенность, состоятельность, эффективность. Достоинство МНК: простота мат.выводов и вычислит-х процедур.
Пусть имеем выборку из 4-х точек (n=4):
P1 =(x1, y1),P2 =(x2, y2), P3 =(x3, y3), P4 =(x4, y4)
Предполагаем, что существует теоретическая прямая, которая наилучшим образом проходит через них. Задача: оценить с некоторой точностью, как может проходить эта прямая
И
так,
оценки параметров модели парной регрессии
согласно МНК будем искать из условия:
Задача оценки параметров парной регр.модели МНК сводится к задаче определения экстремума (минимума) ф-ии 2х аргументов
Система называется системой нормальных уравнений для вычисления оценок параметров уравнения парной регрессии. Упростим систему нормальных уравнений.
Убеждаемся, что решение системы уравнений будет соответствовать минимуму функции.
Для этого вычисляем значения вторых частных производных функции
Для решения системы выразим из первого уравнения ã0, подставим его во второе уравнение. Получим:
П
роанализируем
выражение. Для этого вычислим COV(x,y)
и σ2(x).Получим:
Проверим выполнение условия несмещенности для оценки. Для этого вычислим
числитель
выражения .Получаем:
Вычислим дисперсии параметров уравнения регрессии и дисперсию прогнозирования эндогенной переменной.
С помощью МНК получили
1)Оценки параметров уравнения регрессии, по крайней мере, состоятельными
2)Если случайное возмущение подчиняется нормальному закону распределения, то оценки параметров модели несмещенные и эффективные
3)Нет необходимости в знании закона распределения случайных возмущений.
