Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по эконометрике.docx
Скачиваний:
8
Добавлен:
01.05.2025
Размер:
921.4 Кб
Скачать

42. Этапы построения эконометрических моделей

Процесс (комплекс решаемых задач) построения экономических моделей можно условно разбить на несколько этапов. Отметим, что это деление условное и различные авторы такое деление производят по-разному. Это относится к количеству этапов, но не к комплексу задач, которые необходимо решить в процессе построения модели. четыре основных этапа:

1 спецификация модели;

2 сбор исходной информации;

3 идентификация модели;

4 анализ адекватности модели.

1. Спецификация модели - подробное описание на математическом языке закономерностей поведения экономического объекта. На практике придерживаются следующего принципа спецификации модели.

Первый принцип спецификации подсказывает, источник закономерностей взаимосвязей между переменными объекта и формулируется следующим образом: Модель появляется в результате перевода на математический язык (математической формализации) известных закономерностей поведения объекта

второй принцип спецификации модели: количество уравнений в модели равно количеству эндогенных переменных, участвующих в модели

Третий принцип спецификации модели заключается в необходимости учета влияния времени на значения переменных.

Четвертый принцип спецификации модели заключается в необходимости учета случайных возмущений при записи уравнений модели.

2. выбор общего вида модели, в том числе состава и формы входящих в неё связей между переменными; сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показате­лей;

3.  статистический анализ модели и в первую очередь статистическое оценивание неизвестных параметров модели Непосредственно связан с проблемой идентифицируемостимодели, то есть ответа на вопрос «Возможно ли в принципе однозначно восстановить значения неизвестных параметров модели по имеющимся исходным данным в соответст-вии с решением, принятым на этапе параметризации?». После положительного ответа на этот вопрос необходимо решить проблему идентификации модели то есть предложить и реализовать математически корректную процедуру оценива­ния неизвестных параметров модели по имеющимся исходным данным;

4. сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.

43. Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели, включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.

Включение в уравнения множественной регрессии того или иного набора факторов связано, прежде всего, с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию должны отвечать следующим требованиям:

  • должны быть количественно измеримы;

  • не должны быть интеркоррелированы и, тем более, находиться в точной функциональной связи.

Включаемые во множественную регрессию факторы должны объяснять вариацию независимой переменной. Если строится модель с набором р-факторов, то для нее рассчитывается показатель детерминации R2, который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р-факторов. Влияние других, неучтенных в модели факторов, оценивается как 1-R2 с соответствующей остаточной дисперсией S2 .

При дополнительном включении в регрессию фактора (1+р) коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться: R2p+1 >= R2p и S2р+1 =< S2р

Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включаемые в анализ фактор хр+1 не улучшает модель и практически является лишним фактором.

Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметром регрессии по t –критерию Стьюдента. Т.о. отбор факторов обычно осуществляется в две стадии: на первой – подбирают факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Для оценки значимости коэффициента регрессии его величину сравнивают с его стандартной ошибкой, т.е. определяют фактическое значение t-критерия Стьюдента

где mb – стандартная ошибка параметра ,

где S остаточная дисперсия на одну степень свободы

Данный критерий затем сравнивается с табличным значением при определенном уровне значимости α и числе степеней свободы (n-2).

Если tтабл < tфакт, то H0 отклоняется, т.е. переменная оказывает влияние на модель. Если tтабл > tфакт, то гипотеза Но не откло­няется т.е. переменная не оказывает влияние на модель.