- •12. Линейная модель множественной регрессии
- •13.Экономический смысл коэффициентов линейного и степенного уравнений регрессии
- •14.Нелинейная регрессия. Нелинейные модели и их линеаризация
- •15.Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •16.Предпосылки применения метода наименьших квадратов (мнк)
- •17.Оценка параметров парной регрессионной модели методом наименьших квадратов
- •18.Оценка параметров парной регрессионной модели методом наименьших квадратов. Система нормальных уравнений
- •19.Теорема Гаусса - Маркова
- •20.Метод наименьших квадратов (мнк) и смысл выходной статистической информации сервиса Регрессия
- •21.Свойства оценок метода наименьших квадратов (мнк)
- •22.Метод наименьших квадратов (мнк) и его реализация с использованием сервиса “Поиск решения”
- •22.Мнк и его реализация с использованием сервиса «Поиск решений»
- •23.Понятие и причины автокорреляции остатков. Последствия автокорреляции остатков. Обнаружение автокорреляции остатков.
- •24.Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений
- •25.Анализ экономических объектов и прогнозирование с помощью модели множественной регрессии
- •26. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений
- •27.Отражение в модели влияния неучтённых факторов. Предпосылки теоремы Гаусса-Маркова.
- •28.Проверка выполнения предпосылок мнк
- •29.Что такое стационарный процесс
- •30.Оценка качества моделей прогнозирования. Оценка точности
- •1) Проверка равенства мат ожидания нулю
- •2)Проверка условий случайности возникновения отдельных отклонений от тренда:
- •3)Проверка независимости(отсутствие автокорреляции)
- •31. Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений
- •32. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки и последствия мультиколлинеарности
- •34. Фиктивные переменные: определение, назначение, типы
- •35. Оценивание линейной модели множественной регрессии (мнк) в Excel.
- •36. Отбор факторов при построении множественной регрессии. Процедура пошагового отбора переменных
- •37. Регрессионные модели с фиктивными переменными
- •38. Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel.
- •39. Фиктивная переменная сдвига: назначение; спецификация
- •40. Принципы спецификации эконометрических моделей
- •41. Основные числовые хар-ки вектора остатков в классической множественной регрессионной модели
- •42. Этапы построения эконометрических моделей
- •43. Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии
- •44. Нелинейная модель множественной регрессии Кобба-Дугласа.
- •45. Модели с бинарными фиктивными переменными
- •46.Метод наименьших квадратов: алгоритм метода; условия применения
- •47. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности.
- •48. Прогноз по временному ряду с сезонными колебаниями
- •50. Модели временных рядов. Свойства рядов цен на бирже
- •51.Матричная форма метода наименьших квадратов.
- •52.Условия идентификации структурной формы системы одновременных уравнений
- •Нелинейная регрессия
- •54. Оценка влияния отдельных факторов на зависимую переменную на основе модели (коэффициенты эластичности, - коэффициенты).
- •55. Оценивание линейной модели множественной регрессии в Excel
- •56. Системы эконометрических уравнений
42. Этапы построения эконометрических моделей
Процесс (комплекс решаемых задач) построения экономических моделей можно условно разбить на несколько этапов. Отметим, что это деление условное и различные авторы такое деление производят по-разному. Это относится к количеству этапов, но не к комплексу задач, которые необходимо решить в процессе построения модели. четыре основных этапа:
1 спецификация модели;
2 сбор исходной информации;
3 идентификация модели;
4 анализ адекватности модели.
1. Спецификация модели - подробное описание на математическом языке закономерностей поведения экономического объекта. На практике придерживаются следующего принципа спецификации модели.
Первый принцип спецификации подсказывает, источник закономерностей взаимосвязей между переменными объекта и формулируется следующим образом: Модель появляется в результате перевода на математический язык (математической формализации) известных закономерностей поведения объекта
второй принцип спецификации модели: количество уравнений в модели равно количеству эндогенных переменных, участвующих в модели
Третий принцип спецификации модели заключается в необходимости учета влияния времени на значения переменных.
Четвертый принцип спецификации модели заключается в необходимости учета случайных возмущений при записи уравнений модели.
2. выбор общего вида модели, в том числе состава и формы входящих в неё связей между переменными; сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показателей;
3. статистический анализ модели и в первую очередь статистическое оценивание неизвестных параметров модели Непосредственно связан с проблемой идентифицируемостимодели, то есть ответа на вопрос «Возможно ли в принципе однозначно восстановить значения неизвестных параметров модели по имеющимся исходным данным в соответст-вии с решением, принятым на этапе параметризации?». После положительного ответа на этот вопрос необходимо решить проблему идентификации модели то есть предложить и реализовать математически корректную процедуру оценивания неизвестных параметров модели по имеющимся исходным данным;
4. сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.
43. Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии
Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели, включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.
Включение в уравнения множественной регрессии того или иного набора факторов связано, прежде всего, с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию должны отвечать следующим требованиям:
должны быть количественно измеримы;
не должны быть интеркоррелированы и, тем более, находиться в точной функциональной связи.
Включаемые во множественную регрессию факторы должны объяснять вариацию независимой переменной. Если строится модель с набором р-факторов, то для нее рассчитывается показатель детерминации R2, который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р-факторов. Влияние других, неучтенных в модели факторов, оценивается как 1-R2 с соответствующей остаточной дисперсией S2 .
При дополнительном включении в регрессию фактора (1+р) коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться: R2p+1 >= R2p и S2р+1 =< S2р
Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включаемые в анализ фактор хр+1 не улучшает модель и практически является лишним фактором.
Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметром регрессии по t –критерию Стьюдента. Т.о. отбор факторов обычно осуществляется в две стадии: на первой – подбирают факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.
Для оценки значимости коэффициента регрессии его величину сравнивают с его стандартной ошибкой, т.е. определяют фактическое значение t-критерия Стьюдента
где
mb
– стандартная ошибка параметра
,
где S остаточная дисперсия на одну степень свободы
Данный критерий затем сравнивается с табличным значением при определенном уровне значимости α и числе степеней свободы (n-2).
Если tтабл < tфакт, то H0 отклоняется, т.е. переменная оказывает влияние на модель. Если tтабл > tфакт, то гипотеза Но не отклоняется т.е. переменная не оказывает влияние на модель.
