- •12. Линейная модель множественной регрессии
- •13.Экономический смысл коэффициентов линейного и степенного уравнений регрессии
- •14.Нелинейная регрессия. Нелинейные модели и их линеаризация
- •15.Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •16.Предпосылки применения метода наименьших квадратов (мнк)
- •17.Оценка параметров парной регрессионной модели методом наименьших квадратов
- •18.Оценка параметров парной регрессионной модели методом наименьших квадратов. Система нормальных уравнений
- •19.Теорема Гаусса - Маркова
- •20.Метод наименьших квадратов (мнк) и смысл выходной статистической информации сервиса Регрессия
- •21.Свойства оценок метода наименьших квадратов (мнк)
- •22.Метод наименьших квадратов (мнк) и его реализация с использованием сервиса “Поиск решения”
- •22.Мнк и его реализация с использованием сервиса «Поиск решений»
- •23.Понятие и причины автокорреляции остатков. Последствия автокорреляции остатков. Обнаружение автокорреляции остатков.
- •24.Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений
- •25.Анализ экономических объектов и прогнозирование с помощью модели множественной регрессии
- •26. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений
- •27.Отражение в модели влияния неучтённых факторов. Предпосылки теоремы Гаусса-Маркова.
- •28.Проверка выполнения предпосылок мнк
- •29.Что такое стационарный процесс
- •30.Оценка качества моделей прогнозирования. Оценка точности
- •1) Проверка равенства мат ожидания нулю
- •2)Проверка условий случайности возникновения отдельных отклонений от тренда:
- •3)Проверка независимости(отсутствие автокорреляции)
- •31. Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений
- •32. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки и последствия мультиколлинеарности
- •34. Фиктивные переменные: определение, назначение, типы
- •35. Оценивание линейной модели множественной регрессии (мнк) в Excel.
- •36. Отбор факторов при построении множественной регрессии. Процедура пошагового отбора переменных
- •37. Регрессионные модели с фиктивными переменными
- •38. Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel.
- •39. Фиктивная переменная сдвига: назначение; спецификация
- •40. Принципы спецификации эконометрических моделей
- •41. Основные числовые хар-ки вектора остатков в классической множественной регрессионной модели
- •42. Этапы построения эконометрических моделей
- •43. Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии
- •44. Нелинейная модель множественной регрессии Кобба-Дугласа.
- •45. Модели с бинарными фиктивными переменными
- •46.Метод наименьших квадратов: алгоритм метода; условия применения
- •47. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности.
- •48. Прогноз по временному ряду с сезонными колебаниями
- •50. Модели временных рядов. Свойства рядов цен на бирже
- •51.Матричная форма метода наименьших квадратов.
- •52.Условия идентификации структурной формы системы одновременных уравнений
- •Нелинейная регрессия
- •54. Оценка влияния отдельных факторов на зависимую переменную на основе модели (коэффициенты эластичности, - коэффициенты).
- •55. Оценивание линейной модели множественной регрессии в Excel
- •56. Системы эконометрических уравнений
38. Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel.
М одель множественной регрессии имеет вид:
Согласно методу наименьших квадратов, необходимо найти такие значения оценок параметров модели, которые соответствуют минимуму суммы квадратов остатков.
алгоритм:
1. Заполнить таблицу: Записываем в столбцы значения переменных.
-
A
B
1
y1
x11
…
xk1
2
y2
x12
…
xk2
…
…
…
…
…
n
yn
x1n
…
xkn
n+1
n+2
n+3
n+4
n+5
2. Выделяем данный диапазон и нажимаем Данные/ Анализ данных/ Корреляция
3. В результате будет получена матрица коэффициентов парной корреляции
|
y |
x1 |
x2 |
x3 |
y |
|
|
|
|
x1 |
|
|
|
|
x2 |
|
|
|
|
x3 |
|
|
|
|
|
|
|
|
|
4. на основании полученных данных делаем вывод о параметрах модели, определяем характер линейной связи. Выбираем наиболее коллерируемые переменные.
39. Фиктивная переменная сдвига: назначение; спецификация
Фиктивная переменная (англ. dummy variable) — качественная переменная, принимающая значения 0 и 1, включаемая в эконометрическую модель для учёта влияния качественных признаков и событий на объясняемую переменную.
Фиктивная переменная сдвига - это переменная, которая меняет точку пересечения линии регрессии с осью ординат в случае применения качественной переменной.
— модель с фиктивной переменной сдвига; Переход фиктивной переменной с одной градации на другую вызывает скачкообразное изменение эндогенной переменной. Фиктивные переменные, которые приводят лишь к скачкообразному изменению эндогенной переменной, называются фиктивными переменными сдвига
Фиктивные переменные применяют при построение динамических моделей, когда с определенного момента времени начинает действовать какой-либо качественный признак.
Введение дополнительного слагаемого в спецификацию модели позволяет учесть возможность одновременного сдвига (изменение свободного коэффициента) и наклона (коэффициента при количественном регрессоре) прямой зависимости переменной y от x.
начение
фиктивной переменной dt=0 называется
базовым, или сравнительным. Выбор
базового значения определяется
целями исследования или принимается
произвольно. При замене базового значения
переменной суть модели не меняется, а
меняется знак параметра Yнапротивоположный.
Для того чтобы дать интерпретацию
параметру δ, определим условное мат.
ожидание зависимой переменной:
Т.о.,
величина δ -это среднее изменение
изучаемого признака при переходе из
одной категории в другую при неизменных
значениях остальных параметров.
Геометрическая
интерпретация параметра δ:
