Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МОЙ ЗАКЛЮЧИТЕЛЬНЫЙ ВАРИАНТ ОТВЕТОВ.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
8.12 Mб
Скачать
  1. Данные, необходимые для расчета и графического изображения шкалы регрессии

    • коэффициент регрессии — Rу/х;

    • уравнение регрессии — у = Му + Rу/х (х-Мx);

    • сигма регрессии — σRx/y

  2. Последовательность расчетов и графического изображения шкалы регрессии.

    • определить коэффициент регрессии по формуле (см. п. 3). Например, следует определить, насколько в среднем будет меняться масса тела (в определенном возрасте в зависимости от пола), если средний рост изменится на 1 см.

    • по формуле уравнения регрессии (см п. 4) определить, какой будет в среднем, например, масса тела (у, у2, у3...)* для определеного значения роста (х, х2, х3...).  ________________  * Величину "у" следует рассчитывать не менее чем для трех известных значений "х".

При этом средние значения массы тела и роста (Мх, и Му) для определенного возраста и пола известны

  • вычислить сигму регрессии, зная соответствующие величины σу и rху и подставляя их значения в формулу (см. п. 6).

  • на основании известных значений х1, х2, х3 и соответствующих им средних значений у1, у2 у3, а также наименьших (у — σrу/х) и наибольших (у + σrу/х) значений (у) построить шкалу регрессии.

Для графического изображения шкалы регрессии на графике сначала отмечаются значения х, х2, х3 (ось ординат), т.е. строится линия регрессии, например зависимости массы тела (у) от роста (х).

Затем в соответствующих точках у1, y2, y3 отмечаются числовые значения сигмы регрессии, т.е. на графике находят наименьшее и наибольшее значения у1, y2, y3.

  1. Практическое использование шкалы регрессии. Разрабатываются нормативные шкалы и стандарты, в частности по физическому развитию. По стандартной шкале можно дать индивидуальную оценку развития детей. При этом физическое развитие оценивается как гармоничное, если, например, при определенном росте масса тела ребенка находится в пределах одной сигмы регрессии к средней расчетной единице массы тела — (у) для данного роста (x) (у ± 1 σRy/x).

Физическое развитие считается дисгармоничным по массе тела, если масса тела ребенка для определенного роста находится в пределах второй сигмы регрессии: (у ± 2 σRy/x)

Физическое развитие будет резко дисгармоничным как за счет избыточной, так и за счет недостаточной массы тела, если масса тела для определенного роста находится в пределах третьей сигмы регрессии (у ± 3 σRy/x).

  1. Расчет параметров линейной парной регрессии

Парная – регрессия между двумя переменными у и x, т. е, модель вида: у = f (x) + Е, где у -зависимая переменная (результативный признак), x – независимая, объясняющая переменная (признак - фактор), Е - возмущение, или стохастическая переменная, включающая влияние неучтенных факторов в модели.

В случае парной линейной зависимости строится регрессионная модель по уравнению линейной регрессии. Параметры этого уравнения оцениваются с помощью процедур, наибольшее распространение получил метод наименьших квадратов.

Метод наименьших квадратов (МНК) - метод оценивания параметров линейной регрессии, минимизирующий сумму квадратов отклонений наблюдений зависимой переменной от искомой линейной функции.

где уi- статические значения зависимой переменной; f (х) - теоретические значения зависимой переменной, рассчитанные с помощью уравнения регрессии.

Экономический смысл параметров уравнения линейной парной регрессии. Параметр b показывает среднее изменение результата у с изменением фактора х на единицу. Параметр а = у, когда х = 0. Если х не может быть равен 0, то а не имеет экономического смысла. Интерпретировать можно только знак при а: если а > 0. то относительное изменение результата происходит медленнее, чем изменение фактора, т. е. вариация результата меньше вариации фактора: V < V. и наоборот.

То есть МНК заключается в том, чтобы определить а и а, так, чтобы сумма квадратов разностей фак­тических у и у.вычисленных по этим значениям aи а1 была минимальной:

Рассматривая эту сумму как функцию a0 и a1 дифференцируем ее по этим параметрам и приравниваем производные к нулю, получаем следующие равенства:

- число единиц совокупности (заданных параметров значений x и у). Это система «нормальных» уравнений МНК для линейной функции (yx)

Расчет параметров уравнения линейной регрессии:

 , a = y – bx

Нахождение уравнения регрессии по сгруппированным данным. Если совокупность сгруппирована по признаку x, для каждой группы найдены средние значения другого признака у, то эти средние дают представление о том, как меняется в среднем у в зависимости от х. Поэтому группировка служит средством анализа связи в статистике. Но ряд групповых средних уx имеет тот недостаток, что он подвержен случайным колебаниям. Они создают колебания уx отражающие не закономерность данной зависимости, а затушевывающий ее «шум».

Групповые средние хуже отражают закономерность связи, чем уравнение регрессии, но могут быть использованы в качестве основы для нахождения этого уравнения. Умножая численность каждой группы nч на групповую среднюю уч мы получим сумму у в пределах группы Суммируя эти суммы, найдем общую сумму у. Несколько сложнее с суммойху. Если при сумме ху интервалы группировки малы, то можно считать значение x для всех единиц в рамках группы одинаковым Умножив на него сумму у, получим сумму произведений x на у в рамках группы и, суммируя эти суммы, общую сумму xу. Численность nx, здесь играет такую же роль, как взвешивание в вычислении средних.

С помощью регрессионного анализа формируется модель или форма связи между факторами и результативными признаками. Если модель отражает связь между одним факторным и результативным показателем, то модель назыв. прогрессивной. Результативный показатель – ŷ ; ŷ = ао + а1*х   -  уравнение линейной парной регрессии ао , а1 – параметры ; х=0, ŷ= ао ; а1 – опред. силу связи между фак-ым и результ-ым показателем. Линейная  ;  Гиперболическая  ; Параболическая  ; Показательная  . Для проверки возможности использования линейной функции определяется разность  , если она <0,1 то можно применить линейную функцию.  ,m – число групп. Если  < F-критерия, то можно. (Значение F-критерия определяется по таблице α=0,05, число степеней свободы числителя (k1 = m-2) и знаменателя (k2 =n-m))