
- •Московский университет государственного управления
- •Вопросы для подготовки к экзамену
- •Предмет, метод и задачи статистики
- •1. Статистики экономического потенциала общества
- •2. Статистики результатов экономической деятельности
- •3. Статистики уровня жизни населения
- •Организация государственной статистики в рф
- •Этапы статического исследования
- •Статистическое наблюдение: основные формы и виды
- •Программно-методологические вопросы статистического наблюдения
- •Организационные вопросы статистического наблюдения
- •Статистическая сводка, назначение, сущность
- •Виды статистических сводок
- •Статистическая группировка, назначение, сущность
- •Виды группировок
- •Абсолютные статистические величины: понятие, виды
- •Относительные статистические величины: понятие и виды
- •4.2. Виды и взаимосвязи относительных величин
- •Средние величины: понятие, формы
- •Виды средних
- •Средняя арифметическая величина: простая и взвешенная Средняя арифметическая
- •Средняя арифметическая простая
- •Средняя арифметическая взвешенная
- •Средняя арифметическая для интервального ряда
- •Основные свойства средней арифметической Средняя арифметическая обладает целым рядом свойств, которые более полно раскрывают ее сущность и упрощают расчет:
- •Из другого места:
- •Степенные средние
- •Степенные средние величины
- •Структурные средние: мода и медиана
- •Статические ряды распределения: назначение, виды
- •Правила построения рядов распределения
- •Полигон
- •6.1. Распределение домохозяйств по размеру
- •Гистограмма
- •Кумулята
- •6.4. Кривая концентрации
- •Понятие вариации в статистике
- •Показатели вариации: абсолютные и относительные
- •Правило сложения дисперсий
- •Коэффициент детерминации
- •Чушь из википедии:
- •Индексы: понятие и виды
- •Индивидуальные индексы цен, физического объема, товарооборота Индивидуальные индексы
- •Агрегатные индексы цен, физического объема, товарооборота, их взаимосвязь
- •На всякий случай: Общие индексы
- •Основные формулы исчисления сводных или общих индексов
- •Среднеарифметический и среднегармонический индексы цен и физического объема продукции
- •Индексы постоянного состава, переменного состава и структурных сдвигов, их взаимосвязь
- •2. Общий индекс валовой продукции:
- •3. Общий индекс численности поголовья:
- •Выборочное наблюдение, виды выборки (повторная. Бесповторная)
- •На всякий случай:
- •Генеральная совокупность и выборка из нее
- •Основные способы организации выборки
- •Основные характеристики параметров генеральной и выборочной совокупности
- •Средняя и предельная ошибки выборки. Ошибки выборки
- •Вариант ответа юли румянцевой:
- •Расчет доверительного интервала выборки Распространение выборочных результатов на генеральную совокупность
- •Расчет необходимой численности выборки, обеспечивающей заданную точность наблюдения Необходимый объем выборки
- •Ещё вариант:
- •Ряды динамики: понятие, назначение
- •Виды рядов динамики: моментные, интервальные
- •Приведение рядов динамики к сопоставимому виду Приведение рядов динамики к одинаковому основанию
- •Далее см. Рисунок ниже:
- •Аналитические и средние показатели рядов динамики
- •Методы сглаживания рядов динамики: укрупнение интервалов
- •Методы сглаживания рядов динамики: скользящей средней
- •Методы сглаживания рядов динамики: аналитическое выравнивание
- •Виды взаимосвязей между явлениями Общее представление о корреляционно-регрессивном анализе
- •Функциональная связь, ее характеристика
- •Корреляционная связь, ее характеристика
- •На всякий случай:
- •Показатели тесноты связи
- •Далее не знаю, ничего в интернете больше нет. Вот что нашла:
- •Размах вариации (r)
- •Среднее линейное и квадратическое отклонение
- •Дисперсия
- •Относительные показатели вариации
- •Линейный коэффициент корреляции
- •Ещё вариант:
- •3. Линейная корреляция.
- •Корреляционный анализ, его цель и назначение Корреляционный анализ. Линейный коэффициент корреляции, коэффициент корреляции рангов. Коэффициент связи качественных признаков
- •Регрессионный анализ, его цель и назначение
- •Ещё вариант:
- •Данные, необходимые для расчета и графического изображения шкалы регрессии
- •Расчет параметров линейной парной регрессии
- •Частные коэффициенты корреляции
- •Множественный коэффициент корреляции
- •Цели и задачи социально-экономической статистики
- •Система национальных счетов: назначение
- •Основные понятия и классификации снс
- •Основные счета снс, принципы их построения
- •Из другой книги (чуть короче, а так – абсолютно то же самое):
- •Основные макроэкономические показатели снс
- •5. Чистый национальный продукт (чнп).
- •Другой вариант:
- •Валовой внутренний продукт – центральный показатель снс
- •Из реферата:
- •Методы расчета ввп
- •Категория «национальное богатство»
- •Система показателей статистики национального богатства
- •Задачи статистики национального богатства Задачи статистики национального богатства Статистика национального богатства призвана решать следующие задачи:
- •Другая книга:
- •Состав экономических и финансовых активов.
- •Состав национального богатства
- •Состав национального богатства в соответствии с Методологическими положениями по статистике рф
- •Статистика национального богатства, баланс активов и пассивов Задачи статистики национального богатства
- •Система показателей статистики национального богатства
- •Нефинансовые произведенные активы, их сущность и состав
- •Нефинансовые непроизведенные активы, их сущность и состав
- •Задачи статистики основных фондов
- •Ещё вариант:
- •Статистические группировки основных фондов
- •Понятие «основные фонды» и виды стоимости основных фондов
- •Показатели состояния основных фондов
- •Задача (практический пример)
- •Баланс основных фондов
- •Показатели эффективности использования основных фондов
- •Показатели движения основных фондов
- •На всякий случай: Анализ состояния и использования основных фондов
- •Задачи статистики материальных оборотных активов Оборотные средства предприятия
- •Состав материальных оборотных активов
- •Показатели оборачиваемости оборотных фондов Показатели наличия и использования оборотных фондов
- •Практические задачи:
- •Задачи статистики научно-технического прогресса
- •На всякий случай информация по нтп:
- •Задачи статистики кредитной деятельности
- •Задачи статистики банковской и биржевой деятельности
- •Тема 17. Статистические показатели денежного обращения и кредита. Статистика банковской и биржевой деятельности
- •Основные показатели сферы банковской деятельности
- •Статистическая информация о деятельности коммерческих банков
- •!!! Далее не уверена, что это – то, надо смотреть и выбирать!!!
- •Основные показатели статистики рынка ценных бумаг
- •По размещению:
- •По погашению и купонным выплатам:
- •По структуре облигационного долга на дату – долю отдельных ценных бумаг в общем объеме обращения по номиналу;
- •Понятие «ценные бумаги», их экономическая функция
- •Статистический анализ рынка ценных бумаг
- •Выбирайте нужное!
- •Инфляция и задачи ее статистического изучения
- •Показатели инфляции в статистике
- •Задачи статистики цен, цель статистического анализа цен
- •Понятие «средняя цена» и ее определение методами статистики
- •Основные этапы статистического анализа цен производителей, сводных показателей цен на промышленную продукцию
- •Сводные индексы потребительских цен (формула Ласпейреса)
- •Статистика рынка труда, занятости, безработицы
- •Статистика трудовых ресурсов: экономически активное население и экономически неактивное население
- •Статистика численности работников
- •Коэффициент оборота по приему:
- •Коэффициент оборота по выбытию:
- •Коэффициент текучести:
- •Вариант юли румянцевой:
- •Статистика затрат на рабочую силу и формы оплаты труда работников.
- •Вариант юли румянцевой:
- •Фонды рабочего времени и показатели их использования.
- •Статистика себестоимости
- •Статистика населения
- •Показатели естественного движения населения
- •Показатели механического движения населения
- •Расчет перспективной численности населения. Расчет перспективной численности населения
- •Методы прогнозирования численности населения
- •Особенности прогнозирования численности населения
- •На всякий случай:
- •Система показателей уровня жизни населения.
- •Индекс развития человеческого потенциала Индекс развития человеческого потенциала
- •Цели и задачи статистики финансов
- •Статистика государственных финансов
- •Бюджетная классификация – основа системы статистических показателей государственных финансов
- •Статистика денежного обращения
- •Статистика денежных агрегатов
- •Вариант таши каминской:
- •Макроэкономические показатели статистики денежного обращения
- •Статистика финансов предприятий
- •Информационная база статистического анализа финансового состояния предприятия
- •Система статистических показателей оценки финансового состояния предприятий
- •Статистические показатели платежеспособности и финансовой устойчивости предприятий
- •Показатели эффективности деятельности предприятий
Ещё вариант:
РЕГРЕССИОННЫЙ АНАЛИЗ
При наличии корреляционной связи между факторными и результативными признаками врачам нередко приходится устанавливать, на какую величину может измениться значение одного признака при изменении другого на общепринятую или установленную самим исследователем единицу измерения.
Например, как изменится масса тела школьников 1-го класса (девочек или мальчиков), если рост их увеличится на 1 см. В этих целях применяется метод регрессионного анализа.
Наиболее часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.
Определение регрессии. Регрессия — функция, позволяющая по средней величине одного признака определить среднюю величину другого признака, корреляционно связанного с первым.
С этой целью применяется коэффициент регрессии и целый ряд других параметров. Например, можно рассчитать число простудных заболеваний в среднем при определенных значениях среднемесячной температуры воздуха в осенне-зимний период.
Определение коэффициента регрессии. Коэффициент регрессии — абсолютная величина, на которую в среднем изменяется величина одного признака при изменении другого связанного с ним признака на установленную единицу измерения.
Формула коэффициента регрессии. Rу/х = rху x (σу / σx) где Rу/х — коэффициент регрессии; rху — коэффициент корреляции между признаками х и у; (σу и σx) — среднеквадратические отклонения признаков x и у.
В нашем примере [rху = - 0,96 коэффициент корреляции между изменениями среднемесячной температуры в осенне-зимний период (х) и средним числом инфекционно-простудных заболеваний (у)]; σх = 4,6 (среднеквадратическое отклонение температуры воздуха в осенне-зимний период; σу = 8,65 (среднеквадратическое отклонение числа инфекционно-простудных заболеваний). Таким образом, Rу/х — коэффициент регрессии. Rу/х = -0,96 х (4,6 / 8,65) = 1,8, т.е. при снижении среднемесячной температуры воздуха (x) на 1 градус среднее число инфекционно-простудных заболеваний (у) в осенне-зимний период будет изменяться на 1,8 случаев.
Уравнение регрессии. у = Му + Ry/x (х - Мx) где у — средняя величина признака, которую следует определять при изменении средней величины другого признака (х); х — известная средняя величина другого признака; Ry/x — коэффициент регрессии; Мх, Му — известные средние величины признаков x и у.
Например, среднее число инфекционно-простудных заболеваний (у) можно определить без специальных измерений при любом среднем значении среднемесячной температуры воздуха (х). Так, если х = - 9°, Rу/х = 1,8 заболеваний, Мх = -7°, Му = 20 заболеваний, то у = 20 + 1,8 х (9-7) = 20 + 3,6 = 23,6 заболеваний. Данное уравнение применяется в случае прямолинейной связи между двумя признаками (х и у).
Назначение уравнения регрессии. Уравнение регрессии используется для построения линии регрессии. Последняя позволяет без специальных измерений определить любую среднюю величину (у) одного признака, если меняется величина (х) другого признака. По этим данным строится график — линия регрессии, по которой можно определить среднее число простудных заболеваний при любом значении среднемесячной температуры в пределах между расчетными значениями числа простудных заболеваний.
Сигма регрессии (формула).
где σRу/х — сигма (среднеквадратическое отклонение) регрессии; σу— среднеквадратическое отклонение признака у; rху — коэффициент корреляции между признаками х и у.
Так, если σу - среднеквадратическое отклонение числа простудных заболеваний = 8,65; rху — коэффициент корреляции между числом простудных заболеваний (у) и среднемесячной температурой воздуха в осенне-зимний период (х) равен — 0,96, то
Назначение сигмы регрессии. Дает характеристику меры разнообразия результативного признака (у).
Например, характеризует разнообразие числа простудных заболеваний при определенном значении среднемесячной температуры воздуха в осеннне-зимний период. Так, среднее число простудных заболеваний при температуре воздуха х1 = -6° может колебаться в пределах от 15,78 заболеваний до 20,62 заболеваний. При х2 = -9° среднее число простудных заболеваний может колебаться в пределах от 21,18 заболеваний до 26,02 заболеваний и т.д.
Сигма регрессии используется при построении шкалы регрессии, которая отражает отклонение величин результативного признака от среднего его значения, отложенного на линии регрессии.