
- •Московский университет государственного управления
- •Вопросы для подготовки к экзамену
- •Предмет, метод и задачи статистики
- •1. Статистики экономического потенциала общества
- •2. Статистики результатов экономической деятельности
- •3. Статистики уровня жизни населения
- •Организация государственной статистики в рф
- •Этапы статического исследования
- •Статистическое наблюдение: основные формы и виды
- •Программно-методологические вопросы статистического наблюдения
- •Организационные вопросы статистического наблюдения
- •Статистическая сводка, назначение, сущность
- •Виды статистических сводок
- •Статистическая группировка, назначение, сущность
- •Виды группировок
- •Абсолютные статистические величины: понятие, виды
- •Относительные статистические величины: понятие и виды
- •4.2. Виды и взаимосвязи относительных величин
- •Средние величины: понятие, формы
- •Виды средних
- •Средняя арифметическая величина: простая и взвешенная Средняя арифметическая
- •Средняя арифметическая простая
- •Средняя арифметическая взвешенная
- •Средняя арифметическая для интервального ряда
- •Основные свойства средней арифметической Средняя арифметическая обладает целым рядом свойств, которые более полно раскрывают ее сущность и упрощают расчет:
- •Из другого места:
- •Степенные средние
- •Степенные средние величины
- •Структурные средние: мода и медиана
- •Статические ряды распределения: назначение, виды
- •Правила построения рядов распределения
- •Полигон
- •6.1. Распределение домохозяйств по размеру
- •Гистограмма
- •Кумулята
- •6.4. Кривая концентрации
- •Понятие вариации в статистике
- •Показатели вариации: абсолютные и относительные
- •Правило сложения дисперсий
- •Коэффициент детерминации
- •Чушь из википедии:
- •Индексы: понятие и виды
- •Индивидуальные индексы цен, физического объема, товарооборота Индивидуальные индексы
- •Агрегатные индексы цен, физического объема, товарооборота, их взаимосвязь
- •На всякий случай: Общие индексы
- •Основные формулы исчисления сводных или общих индексов
- •Среднеарифметический и среднегармонический индексы цен и физического объема продукции
- •Индексы постоянного состава, переменного состава и структурных сдвигов, их взаимосвязь
- •2. Общий индекс валовой продукции:
- •3. Общий индекс численности поголовья:
- •Выборочное наблюдение, виды выборки (повторная. Бесповторная)
- •На всякий случай:
- •Генеральная совокупность и выборка из нее
- •Основные способы организации выборки
- •Основные характеристики параметров генеральной и выборочной совокупности
- •Средняя и предельная ошибки выборки. Ошибки выборки
- •Вариант ответа юли румянцевой:
- •Расчет доверительного интервала выборки Распространение выборочных результатов на генеральную совокупность
- •Расчет необходимой численности выборки, обеспечивающей заданную точность наблюдения Необходимый объем выборки
- •Ещё вариант:
- •Ряды динамики: понятие, назначение
- •Виды рядов динамики: моментные, интервальные
- •Приведение рядов динамики к сопоставимому виду Приведение рядов динамики к одинаковому основанию
- •Далее см. Рисунок ниже:
- •Аналитические и средние показатели рядов динамики
- •Методы сглаживания рядов динамики: укрупнение интервалов
- •Методы сглаживания рядов динамики: скользящей средней
- •Методы сглаживания рядов динамики: аналитическое выравнивание
- •Виды взаимосвязей между явлениями Общее представление о корреляционно-регрессивном анализе
- •Функциональная связь, ее характеристика
- •Корреляционная связь, ее характеристика
- •На всякий случай:
- •Показатели тесноты связи
- •Далее не знаю, ничего в интернете больше нет. Вот что нашла:
- •Размах вариации (r)
- •Среднее линейное и квадратическое отклонение
- •Дисперсия
- •Относительные показатели вариации
- •Линейный коэффициент корреляции
- •Ещё вариант:
- •3. Линейная корреляция.
- •Корреляционный анализ, его цель и назначение Корреляционный анализ. Линейный коэффициент корреляции, коэффициент корреляции рангов. Коэффициент связи качественных признаков
- •Регрессионный анализ, его цель и назначение
- •Ещё вариант:
- •Данные, необходимые для расчета и графического изображения шкалы регрессии
- •Расчет параметров линейной парной регрессии
- •Частные коэффициенты корреляции
- •Множественный коэффициент корреляции
- •Цели и задачи социально-экономической статистики
- •Система национальных счетов: назначение
- •Основные понятия и классификации снс
- •Основные счета снс, принципы их построения
- •Из другой книги (чуть короче, а так – абсолютно то же самое):
- •Основные макроэкономические показатели снс
- •5. Чистый национальный продукт (чнп).
- •Другой вариант:
- •Валовой внутренний продукт – центральный показатель снс
- •Из реферата:
- •Методы расчета ввп
- •Категория «национальное богатство»
- •Система показателей статистики национального богатства
- •Задачи статистики национального богатства Задачи статистики национального богатства Статистика национального богатства призвана решать следующие задачи:
- •Другая книга:
- •Состав экономических и финансовых активов.
- •Состав национального богатства
- •Состав национального богатства в соответствии с Методологическими положениями по статистике рф
- •Статистика национального богатства, баланс активов и пассивов Задачи статистики национального богатства
- •Система показателей статистики национального богатства
- •Нефинансовые произведенные активы, их сущность и состав
- •Нефинансовые непроизведенные активы, их сущность и состав
- •Задачи статистики основных фондов
- •Ещё вариант:
- •Статистические группировки основных фондов
- •Понятие «основные фонды» и виды стоимости основных фондов
- •Показатели состояния основных фондов
- •Задача (практический пример)
- •Баланс основных фондов
- •Показатели эффективности использования основных фондов
- •Показатели движения основных фондов
- •На всякий случай: Анализ состояния и использования основных фондов
- •Задачи статистики материальных оборотных активов Оборотные средства предприятия
- •Состав материальных оборотных активов
- •Показатели оборачиваемости оборотных фондов Показатели наличия и использования оборотных фондов
- •Практические задачи:
- •Задачи статистики научно-технического прогресса
- •На всякий случай информация по нтп:
- •Задачи статистики кредитной деятельности
- •Задачи статистики банковской и биржевой деятельности
- •Тема 17. Статистические показатели денежного обращения и кредита. Статистика банковской и биржевой деятельности
- •Основные показатели сферы банковской деятельности
- •Статистическая информация о деятельности коммерческих банков
- •!!! Далее не уверена, что это – то, надо смотреть и выбирать!!!
- •Основные показатели статистики рынка ценных бумаг
- •По размещению:
- •По погашению и купонным выплатам:
- •По структуре облигационного долга на дату – долю отдельных ценных бумаг в общем объеме обращения по номиналу;
- •Понятие «ценные бумаги», их экономическая функция
- •Статистический анализ рынка ценных бумаг
- •Выбирайте нужное!
- •Инфляция и задачи ее статистического изучения
- •Показатели инфляции в статистике
- •Задачи статистики цен, цель статистического анализа цен
- •Понятие «средняя цена» и ее определение методами статистики
- •Основные этапы статистического анализа цен производителей, сводных показателей цен на промышленную продукцию
- •Сводные индексы потребительских цен (формула Ласпейреса)
- •Статистика рынка труда, занятости, безработицы
- •Статистика трудовых ресурсов: экономически активное население и экономически неактивное население
- •Статистика численности работников
- •Коэффициент оборота по приему:
- •Коэффициент оборота по выбытию:
- •Коэффициент текучести:
- •Вариант юли румянцевой:
- •Статистика затрат на рабочую силу и формы оплаты труда работников.
- •Вариант юли румянцевой:
- •Фонды рабочего времени и показатели их использования.
- •Статистика себестоимости
- •Статистика населения
- •Показатели естественного движения населения
- •Показатели механического движения населения
- •Расчет перспективной численности населения. Расчет перспективной численности населения
- •Методы прогнозирования численности населения
- •Особенности прогнозирования численности населения
- •На всякий случай:
- •Система показателей уровня жизни населения.
- •Индекс развития человеческого потенциала Индекс развития человеческого потенциала
- •Цели и задачи статистики финансов
- •Статистика государственных финансов
- •Бюджетная классификация – основа системы статистических показателей государственных финансов
- •Статистика денежного обращения
- •Статистика денежных агрегатов
- •Вариант таши каминской:
- •Макроэкономические показатели статистики денежного обращения
- •Статистика финансов предприятий
- •Информационная база статистического анализа финансового состояния предприятия
- •Система статистических показателей оценки финансового состояния предприятий
- •Статистические показатели платежеспособности и финансовой устойчивости предприятий
- •Показатели эффективности деятельности предприятий
Ряды динамики: понятие, назначение
Ряды динамики — это ряды статистических показателей, характеризующих развитие явлений природы и общества во времени. Публикуемые Госкомстатом России статистические сборники содержат большое количество рядов динамики в табличной форме. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.
Ряды динамики содержат два вида показателей. Показатели времени (годы, кварталы, месяцы и др.) или моменты времени (на начало года, на начало каждого месяца и т.п.). Показатели уровней ряда. Показатели уровней рядов динамики могут быть выражены абсолютными величинами (производство продукта в тоннах или рублях), относительными величинами (удельный вес городского населения в %) и средними величинами (средняя заработная плата работников отрасли по годам и т. п.). В табличной форме ряд динамики содержит два столбца или две строки.
Правильное построение рядов динамики предполагает выполнение ряда требований:
все показатели ряда динамики должны быть научно обоснованными, достоверными;
показатели ряда динамики должны быть сопоставимы по времени, т.е. должны быть исчислены за одинаковые периоды времени или на одинаковые даты;
показатели ряда динамики должны быть сопоставимы по территории;
показатели ряда динамики должны быть сопоставимы по содержанию, т.е. исчислены по единой методологии, одинаковым способом;
показатели ряда динамики должны быть сопоставимы по кругу учитываемых хозяйств. Все показатели ряда динамики должны быть приведены в одних и тех же единицах измерения.
Статистические показатели могут характеризовать либо результаты изучаемого процесса за период времени, либо состояние изучаемого явления на определенный момент времени, т.е. показатели могут быть интервальными ( периодическими ) и моментными. Соответственно первоначально ряды динамики могут быть либо интервальными, либо моментными. Моментные ряды динамики в свою очередь могут быть с равными и неравными промежутками времени.
Первоначальные ряды динамики могут быть преобразованы в ряд средних величин и ряд относительных величин (цепной и базисный). Такие ряды динамики называют производными рядами динамики.
Методика расчета среднего уровня в рядах динамики различна, обусловлена видом ряда динамики. На примерах рассмотрим виды рядов динамики и формулы для расчета среднего уровня.
Виды рядов динамики: моментные, интервальные
Интервальные ряды динамики
Уровни интервального ряда характеризуют результат изучаемого процесса за период времени: производство или реализация продукции ( за год, квартал, месяц и др. периоды), число принятых на работу, число родившихся и.т.п. Уровни интервального ряда можно суммировать. При этом получаем такой же показатель за более длительные интервалы времени.
Средний
уровень в интервальных рядах динамики (
)
исчисляется по формуле средней
арифметической простой:
y — уровни ряда (y1, y2 ,...,yn),
n — число периодов (число уровней ряда).
Рассмотрим методику расчета среднего уровня интервального ряда динамики на примере данных о продаже сахара в России.
Годы |
Продано сахара, тыс. тонн |
1994 |
2905 |
1995 |
2585 |
1996 |
2647 |
- это среднегодовой объем реализации сахара населению России за 1994-1996 гг. Всего за три года было продано 8137 тыс.тонн сахара.
Моментные ряды динамики
Уровни моментных рядов динамики характеризуют состояние изучаемого явления на определенные моменты времени. Каждый последующий уровень включает в себя полностью или частично предыдущий показатель. Так, например, число работников на 1 апреля 1999 г. полностью или частично включает число работников на 1 марта.
Если сложить эти показатели, то получим повторный счет тех работников, которые работали в течение всего месяца. Полученная сумма экономического содержания не имеет, это расчетный показатель.
В моментных рядах динамики с равными интервалами времени средний уровень ряда исчисляется по формулесредней хронологической:
y -уровни моментного ряда;
n -число моментов (уровней ряда);
n — 1 — число периодов времени (лет, кварталов, месяцев).
Рассмотрим методику такого расчета по следующим данным о списочной численности работников предприятия за 1 квартал.
|
Число работников |
на 1 января |
150 |
на 1 февраля |
145 |
на 1 марта |
162 |
на 1 апреля |
166 |
Необходимо вычислить средний уровень ряда динамики, в данном примере — среднюю списочную численность работников предприятия:
Расчет выполнен по формуле средней хронологической. Средняя списочная численность работников предприятия за 1 квартал составила 155 человек. В знаменателе — 3 месяца в квартале, а в числителе (465) — это расчетное число, экономического содержания не имеет. В подавляющем числе экономических расчетов месяцы, независимо от числа календарных дней, считаются равными.
В моментных рядах динамики с неравными интервалами времени средний уровень ряда исчисляется по формуле средней арифметической взвешенной. В качестве весов средней принимается продолжительность времени ( t- дни, месяцы ). Выполним расчет по этой формуле.
Списочная численность работников предприятия за октябрь такова: на 1 октября — 200 человек, 7 октября принято 15 человек, 12 октября уволен 1 человек, 21 октября принято 10 человек и до конца месяца приема и увольнения работников не было. Эту информацию можно представить в следующем виде:
Число работников |
Число дней (период времени) |
200 |
6 (с 1 по 6 включительно) |
215 |
5 (с 7 по 11 включительно) |
214 |
9 (с 12 по 20 включительно) |
224 |
11 (с 21 по 31 включительно) |
При определении среднего уровня ряда надо учесть продолжительность периодов между датами, т. е. применятьформулу средней арифметической взвешенной:
В
данной формуле числитель (
)
имеет экономическое содержание. В
приведенном примере числитель (6665
человеко-дней) — это календарный
фонд времени работников
предприятия за октябрь. В знаменателе
(31 день) — календарное число дней в
месяце.
В
тех случаях, когда имеем моментный ряд
динамики с неравными интервалами
времени, а конкретные даты изменения
показателя неизвестны исследователю,
то сначала надо вычислить среднюю
величину (
)
для каждого интервала времени по формуле
средней арифметической простой, а затем
вычислить средний уровень для всего
ряда динамики, взвесив исчисленные
средние величины продолжительностью
соответствующего интервала времени
.
Формулы имеют следующий вид:
Рассмотренные выше ряды динамики состоят из абсолютных показателей, получаемых в результате статистических наблюдений. Построенные первоначально ряды динамики абсолютных показателей могут быть преобразованы в ряды производные: ряды средних величин и ряды относительных величин. Ряды относительных величин могут быть цепные (в % к предыдущему периоду) и базисные (в % к начальному периоду, принятому за базу сравнения — 100%). Расчет среднего уровня в производных рядах динамики выполняется по другим формулам.