- •Механика жидкости и газа
- •1 Введение в механику жидкости и газа
- •1.1 Предмет и метод механики жидкости и газа
- •1.2 Краткая историческая справка о развитии механики жидкости и газа
- •2 Жидкость и газ, основные понятия и свойсва
- •2.1 Строение жидкости и газа
- •2.2 Основные физические свойства жидкости и газа
- •2.3 Идеальная жидкость
- •2.4 Неньютоновские жидкости
- •2.5 Силы, действующие в жидкостях и газах
- •3 Статика жидкости и газа
- •3.1 Гидростатическое давление и его свойства. Единицы давления
- •3.2 Системы отсчета давления
- •3.3. Дифференциальные уравнения Эйлера равновесия жидкости
- •3.3. Равновесие жидкости в поле силы тяжести, основное уравнение гидростатики
- •3.4. Физический смысл геометрического и пьезометрического напоров
- •3.5. Равновесие газа в поле силы тяжести
- •3.5. Приборы для измерения давления
- •3.6. Сила давления жидкости на плоскую поверхность
- •3.6. Сила давления жидкости на криволинейные поверхности
- •3.7. Закон Архимеда. Плавание тел
- •4 Кинематика жидкости и газа
- •4.1. Методы исследования и виды движения жидкости
- •4.2. Основные понятия струйчатой модели потока жидкости
- •4.3. Гидравлические элементы потока жидкости
- •4.4. Расход, средняя скорость. Уравнение расхода (неразрывности)
- •4.4. Режимы движения жидкости
- •5 Динамика жидкости и газа
- •5.1. Дифференциальные уравнения Эйлера движения идеальной жидкости
- •5.2. Уравнение Бернулли для элементарной струйки идеальной жидкости и потока вязкой жидкости
- •5.3. Гидравлические потери напора
- •5.4. Измерение скоростного напора и расхода жидкости
- •Из уравнения (5.43) несложно найти скорость жидкости в точке установки данного прибора:
- •6 Истечение жидкости и газа через отверстия и насадки
- •6.1. Истечение жидкости через малое отверстие при постоянном напоре
- •6.1. Истечение жидкости через большое отверстие при постоянном напоре
3.6. Сила давления жидкости на криволинейные поверхности
Нахождение силы давления жидкости на криволинейные поверхности в общем случае сводится к определению трех составляющих суммарной силы и трех моментов относительно осей прямоугольных координат. На практике чаще всего применяются объекты с цилиндрическими поверхностями (резервуары, цилиндрические затворы, стенки круглых труб и т. д.), которые относятся к частному случаю криволинейных поверхностей. Поэтому определим силу давления жидкости на цилиндрическую поверхность (рис. 3.15). Над цилиндрической поверхностью находится жидкость, на свободную поверхность которой действует атмосферное давление. На цилиндрической поверхности выделим крышку площадью S, также выделим объем жидкости V, находящийся над крышкой. На крышке выделим элементарную площадку dS , расположенную на глубине h (рис. 3.15, а). Над этой площадкой выделим элементарный объем dV. Поскольку площадка dS элементарная, то ее можно рассматривать как плоскую. Тогда элементарная сила гидростатического давления dF будет направлена по нормали к элементарной площадке dS и равна:
.
(3.24)
Р
азложим
силу dF на горизонтальную
dFГ и
вертикальную dFВ
составляющие. Горизонтальную составляющую
dFГ можно
определить следующим образом:
.
(3.25)
Произведение
является
площадью проекции площадки dS на
вертикальную грань объема dV,
т. е.
.
(3.26)
Тогда
.
(3.27)
Для нахождения горизонтальной составляющей силы давления на крышку площадью S проинтегрируем уравнение (3.27) по площади проекции крышки SB на вертикальную грань объема V:
,
(3.28)
где
–
глубина погружения центра масс (точка
СВ) вертикальной проекции
крышки.
Сила FГ приложена в центре давления вертикальной проекции крышки (т. DВ на рис. 3.15, б).
Аналогично, вертикальная составляющая dFВ элементарной силы dF будет равна:
,
(3.29)
где dSГ – площадь проекции площадки dS на горизонтальную грань объема dV .
Проинтегрируем уравнение (3.29) и получим вертикальную составляющую силы давления:
(3.30)
Сила FВ приложена в центре масс объема V.
Для цилиндрической поверхности силы FГ и FВ будут находиться в одной плоскости. Тогда равнодействующая сила гидростатического давления будет равна:
.
(3.31)
В некоторых случаях жидкость находится под цилиндрической поверхностью (рис. 3.16). Проведя аналогичные рассуждения и выводы, получим формулы для расчета сил FГ и FВ, аналогичные (3.28) и (3.30), но направление данных сил при этом будет противоположным.
