
- •1.История изучения цнс.Предмет, содержание, значение цнс.
- •3.Этапы филогенеза нс.
- •5.Понятие Возбудимость,Возбуждение,раздражимость,раздражение.
- •6. Состояние покоя живой клетки - физическое состояние клетки во время покоя.
- •8.Изменение возбудимости клетки в процессе развития потенциалов.
- •9.Свойство возбудимости тканей.
- •11.Функции глии.
- •12.Структурная и функциональная характеристика нервных волокон.
- •13.Механизм проведения возбуждения по нервным волокнам.
- •14.Структурная и функциональная характеристика синапсов.
- •15.Механизм проведения возбуждения через синапс.
- •18.Морфофункциональная характеристика продолговатого мозга и ретикулярной информации.
- •22.Структура и функции гипоталамуса.
- •23.Морфункциональная характеристика базальных ядер.
- •24.Строение и функции лимбической системы.
8.Изменение возбудимости клетки в процессе развития потенциалов.
Распространение потенциала действия.
По немиелинизированным волокнам.
По немиелинизированному волокну потенциал действия распространяется непрерывно. Проведение нервного импульса начинается с распространением электрического поля. Возникший потенциал действия за счет электрического поля способен деполяризовать мембрану соседнего участка до критического уровня, в результате чего на соседнем участке генерируются новые потенциалы. Сам потенциал действия не перемещается, он исчезает там же, где возник. Главную роль в возникновении нового потенциал действия играет предыдущий.
Если внутриклеточным электродом раздражать аксон посередине, то потенциал действия будет распространяться в обоих направлениях. Обычно же потенциал действия распространяется по аксону в одном направлении (от тела нейрона к нервным окончаниям), хотя деполяризация мембраны происходит по обе стороны от участка, где в данный момент возник потенциал. Одностороннее проведение потенциала действия обеспечивается свойствами натриевых каналов — после открытия они на некоторое время инактивируются и не могут открыться ни при каких значениях мембранного потенциала (свойство рефрактерности). Поэтому на ближнем к телу клетки участке, где до этого уже «прошел» потенциал действия, он не возникает.
При прочих равных условиях распространение потенциала действия по аксону происходит тем быстрее, чем больше диаметр волокна. По гигантским аксонам кальмара потенциал действия может распространяться почти с такой же скоростью, как и по миелинизированным волокнам позвоночных (около 100 м/c).
По миелинизированным волокнам
По миелинизированному волокну потенциал действия распространяется скачкообразно (сальтаторное проведение). Для миелинизированных волокон характерна концентрация потенциалзависимых ионных каналов только в областях перехватов Ранвье; здесь их плотность в 100 раз больше, чем в мембранах безмиелиновых волокон. В области миелиновых муфт потенциалзависимых каналов почти нет. Потенциал действия, возникший в одном перехвате Ранвье, за счет электрического поля деполяризует мембрану соседних перехватов до критического уровня, что приводит к возникновению в них новых потенциал действия, то есть возбуждение переходит скачкообразно, от одного перехвата к другому. В случае повреждения одного перехвата Ранвье потенциал действия возбуждает 2-й, 3-ий, 4-й и даже 5-й, поскольку электроизоляция, создаваемая миелиновыми муфтами, уменьшает рассеивание электрического поля.
«Скачкообразное распространение» увеличивает скорость распространения потенциала действия по миелинизированным волокнам по сравнению с немиелинизированными. Кроме того, миелинизированные волокна толще, а электрическое сопротивление более толстых волокон меньше, что тоже увеличивает скорость проведения импульса по миелинизированным волокнам. Другим преимуществом сальтаторного проведения является его экономичность в энергетическом плане, так как возбуждаются только перехваты Ранвье, площадь которых меньше 1 % мембраны, и, следовательно, необходимо значительно меньше энергии для восстановления трансмембранных градиентов Na+ и K+, расходующихся в результате возникновения потенциал действия, что может иметь значение при высокой частоте разрядов, идущих по нервному волокну.
Чтобы представить, насколько эффективно может быть увеличена скорость проведения за счёт миелиновой оболочки, достаточно сравнить скорость распространения импульса по немиелинизированным и миелинизированным участкам нервной системы человека. При диаметре волокна около 2 µм и отсутствии миелиновой оболочки скорость проведения будет составлять ~1 м/с, а при наличии даже слабой миелинизации при том же диаметре волокна — 15—20 м/с. В волокнах большего диаметра, обладающих толстой миелинововой оболочкой, скорость проведения может достигать 120 м/с.
Скорость распространения потенциала действия по мембране отдельно взятого нервного волокна не является постоянной величиной — в зависимости от различных условий, эта скорость может очень значительно уменьшаться и, соответственно, увеличиваться, возвращаясь к некоему исходному уровню.
Активные свойства мембраны, обеспечивающие возникновение потенциала действия, основываются главным образом на поведении потенциалзависимых натриевых (Na+) и калиевых (K+) каналов. Начальная фаза ПД формируется входящим натриевым током, позже открываются калиевые каналы и выходящий K+-ток возвращает потенциал мембраны к исходному уровню. Исходную концентрацию ионов затем восстанавливает натрий-калиевый насос.
По ходу ПД каналы переходят из состояния в состояние: у Na+ каналов основных состояний три — закрытое, открытое и инактивированное (в реальности дело сложнее, но этих трёх достаточно для описания), у K+ каналов два — закрытое и открытое.
Поведение каналов, участвующих в формировании ПД, описывается через проводимость и высчиляется через коэффициенты переноса (трансфера).
Лабильность (от лат. labilis — скользящий, неустойчивый) в физиологии — функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях. Понятие «лабильность» введено русским физиологом Н. Е. Введенским (1886), который считал мерой лабильности наибольшую частоту раздражения ткани, воспроизводимую ею без преобразования ритма. Лабильность отражает время, в течение которого ткань восстанавливает работоспособность после очередного цикла возбуждения. Наибольшей лабильностью отличаются отростки нервных клеток — аксоны, способные воспроизводить до 500—1000 импульсов в 1 с; менее лабильны центральные и периферические места контакта — синапсы (например, двигательное нервное окончание может передать на скелетную мышцу не более 100—150 возбуждений в 1 с). Угнетение жизнедеятельности тканей и клеток (например, холодом, наркотиками) уменьшает лабильность, так как при этом замедляются процессы восстановления и удлиняется рефрактерный период. Лабильность — величина непостоянная. Так, в сердце под влиянием частых раздражений рефракторный период укорачивается, а следовательно, возрастает лабильность. Это явление лежит в основе т. н. усвоения ритма. Учение о лабильности важно для понимания механизмов нервной деятельности, работы нервных центров и анализаторов как в норме, так и при различных болезненных отклонениях.
В биологии и медицине термином «лабильность» обозначают подвижность, неустойчивость, изменчивость (например, психики, физиологического состояния, пульса, температуры тела и т. д.).
Лабильность (функциональная Подвижность)
характеристикой функционального состояния возбудимого субстрата Наиболее адекватным методом клинического исследования, в котором соединяются показатели порога, силы. времени и лабильности, является метод анализа тетанических реакций, вызываемых ритмической электрической стимуляцией при нарастающей частоте раздражения. Исследование производится с помощью аппарата импульсных токов (желательно с прямоугольной формой каждого импульса), где можно иметь силу тока. длительность н частоту поражения. Активный электрод прикрепляют на двигательной точке нерва или мышцы, пассивный - на поясничную область или бедро. Рекомендуется графическая регистрация двигательного эффекта, получаемого с мышцы, на ленте кимографа. Вначале определяют порог двигательного возбуждения данного нерва или мышцы. Запись тетанизирующего ряда производят при длительности каждого импульса 0,5 м/сек, с постепенно нарастающей градацией частот. В норме на частоте 0,5-1.5 получаются одиночные сокращения, при частоте 10-зубчатый тетанус, при частоте 20-30 и выше прямоугольный гладкий тетанус вплоть до частоты 1000 При патологии в нервно-мышечном приборе и изменении лабильности может наблюдаться раннее образование гетануса, вместо гладкого тетануса появляется зубчатый или отмечается пессимальный характер его (после предварительного сокращения мышцы наступает снижение высоты тетануса вплоть до полного расслабления мышцы). Частота при которой возникают первые признаки пессимального ответа является порогом пессимума частоты. При резком снижении лабильности тетаническое сокращение вообще не образуется. Контролем истинности пессимума является переход на меньшие частоты, которые вновь дают оптимальный ответ Наиболее резкие изменения находят в тетаническом ряде при поражении периферического нейрона (радикулоневрит, полиневрит, неврит и т. п.). При заболеваниях спинного мозга характерные изменения выявляются при миастении (пессимум на больших частотах) и миотонии (вератриноидный характер тетануса, миотонический тип расслабления, раннее появление тетануса на малых частотах). Данный метод позволяет исследовать лабильность нервно-мышечных синапсов и самих мышц и проследить ее зависимость от разнообразных влияний, в том числе от терапевтических воздействий. Лабильность может быть исследована с помощью других методов, например электромиографии.