
- •Лекція № 1. Медична інформатика та її завдання. Методи оброблення медичної інформації
- •Медінформатика та її структура.
- •Завдання медичної інформатики
- •Медична інформація, її властивості.
- •Дискретні та аналогові медичні дані.
- •Аналоговий сигнал Цифровий сигнал
- •Мал.1. Процес перетворення сигналу
- •Стандарти медичних даних.
- •Загальні поняття про методи оброблення медичних даних.
- •Лекція № 2. Комп’ютерні комунікації Мережеві засоби передачі інформації.
- •Інтернет.
- •Телемедицина
- •Електронна пошта
- •Лекція № 3. Медичні інформаційні системи (міс) Поняття про медичні інформаційні системи.
- •Структура міс
- •Автоматизовані системи діагностики захворювань та прогнозування результатів їх лікування.
- •Комп'ютерні діагностичні системи: імовірнісні консультативні та експертні.
- •Експертні системи у медицині.
- •Лекція № 4. Операційні системи у медичних інформаційних системах класу windows.
- •1. Види інформаційних технологій.
- •3. Основні терміни й об'єкти Windows.
- •4. Панель задач та головне меню.
- •Лекція № 5. Сучасні інтегровані пакети прикладних програм (ппп) microsoft office.
- •Лекція № 6. Сучасні текстові процесори та їх можливості у створенні медичної документації. Інформаційний медичний документ: його створення та редагування
- •Робота з медичними документами
- •Лекція № 7. Електронні таблиці та їх можливості у створенні медичної документації та аналізу даних. Основні функції та запуск Excel.
- •Введення та редагування даних.
- •Вставка та видалення рядків і стовпців.
- •Форматування даних
- •Формули
- •Лекція № 8. Програма субд як компонент міс. Основи роботи з релятивістськими бд.
- •Лекція № 9. Статистичне оброблення медичної інформації
- •1. Загальні поняття про статистичні методи оброблення медичних даних.
- •2. Елементарні статистичні характеристики
- •3. Єлементи математичної статистики та їх використання в медицині.
- •Лекція № 10. Медичні приладо-комп’ютерні системи (мпкс)
- •Поняття про медичні приладо-комп'ютерні системи.
- •Мал. 1. Апарат для проведення моніторингу
- •Мал. 2. Застосування мініатюрних кольорових відеокамер у медицині
- •Медичні комп'ютерні системи візуалізації
- •Рентгенівська комп'ютерна томографія
- •Томографія з використанням електромагнітних полів
- •Позитронно-емісійна томографія
- •Ультразвукове дослідження
- •Комп'ютерні моніторингові системи
Рентгенівська комп'ютерна томографія
Як було зазначено вище, при КТ уперше було використано рентгенівське випромінювання як джерело інформації для математичної обробки. Цей чутливий і високоінформативний метод рентгенодіагностики — пошарове рентгенологічне дослідження, засноване на комп'ютерній реконструкції зображення, одержуваного при круговому скануванні об'єкта вузьким пучком рентгенівських променів.
Фізична природа процесу томографування полягає в наступному: інформаційний промінь сканує ("переглядає") людське тіло по окружності. По інший бік рентгенівської трубки встановлено систему датчиків, кількість яких змінювалася від двох (І покоління томографів) до 500 (ІІІ покоління) і до кількох тисяч твердотільних датчиків, розташованих у кілька рядів (ІV покоління).
Мал. 3. Принцип дії рентгенівського променя
Ці датчики фіксують змінені кількісні характеристики інформаційних променів, тобто відтворюють ступінь ослаблення пучка. Обертаючись навколо пацієнта, рентгенівський промінь "переглядає" його тіло під різними ракурсами, у цілому під кутом 360° (мал. ), До кінця обертання випромінювача в пам'яті комп'ютера зберігаються зафіксовані сигнали всіх датчиків. Накопичена інформація у вигляді масиву даних обробляється ППЗ, за допомогою якого реконструюється графічне зображення зрізу (графічна матриця). Воно складається з кількох десятків тисяч світлових точок, яскравість яких пропорційна щільності тканин, через які проходив пучок випромінювання. При цьому комп' ютером розраховується коефіцієнт ослаблення променів або коефіцієнт абсорбції (КА) тканин, що виражається в одиницях Хаунсфілда, для кожної точки зображення. Ця величина показує, наскільки біологічна тканина здатна поглинати (послаблювати) рентгенівські промені. Кістка поглинає рентгенівські промені сильніше порівняно з іншими тканинами і має найбільший КА (+800+ +3000 НU). Повітря практично не поглинає промені і має найменший КА (-1000 НU). Якщо розмістити на прямій три основні точки КА:
— КА максимального ослаблення +1000 НU (щільність кам'янистої частини скроневої кістки);
— КА мінімального ослаблення –1000 НU (щільність повітря);
— КА води 0НU, то одержимо шкалу Хаунсфілда — один з основних інструментів КТ-діагностики.
Здатність тканин поглинати рентгенівські промені прямо пов'язана з їх щільністю, що також може вимірюватися в одиницях Хаунсфілда. Таким чином, якщо за нульову величину щільності прийняти щільність води при щільності кістки +1000 НU і щільності повітря -1000 НU, то дана шкала також буде називатися шкалою Хаунсфілда. Відповідно до цієї шкали весь діапазон щільностей тіла людини складається з 2000 одиниць: від -1000 до +1000. У сучасних КТ-дослідженнях зображення щільностей коливається від -1000 до +3000 НU. А це означає, що чим більша щільність тканин, тим сильніше вона поглинає випромінювання і тим світлішою ця тканина є на екрані: кістка біла, повітря чорне. Таким чином, нормальні і патологічні утворення розрізняють за градаціями переходу від чорного до білого кольору. Деякі тканини і відповідні їм параметри щільності, виражені в одиницях Хаунсфілда, наведено на мал.
Користуючись клавіатурою, лікар може збільшувати це зображення, виділяти і збільшувати окремі його частини, вимірювати розміри органа, визначати щільність кожної ділянки тканини в умовних одиницях. За серією двовимірних зображень за допомогою математичних методів обробки можна відновити об'ємне зображення об'єкта.
У медицині побачити невидиме або ледве помітне оком означає встановити діагноз на ранній стадії захворювання, коли ще можна уникнути небезпечного розвитку патології та оперативного втручання. Основою візуального аналізу будь-яких зображень є пошук і виявлення ледве помітних і невидимих оку лікаря діагностичних ознак. КТ використовують не тільки
Мал. 4. Параметри щільності тканин і рідин організму
з діагностичною метою, а і як метод контролю за виконанням хірургічних втручань. Наприклад, топографія структур головного мозку різко змінюється після розкриття черепа при втручанні на патологічному вогнищі. Під час операції потрібна постійна корекція в оцінці взаємодії анатомічних структур. Під контролем КТ уводять волоконно-оптичні прилади і мікрохірургічні інструменти в ушкоджені ділянки дисків хребців і виконують найтонші операції.
Спочатку існували комп'ютерні томографи для дослідження тільки головного мозку. Це зараз звучить буденно, але 35 років тому вперше у світі людство одержало можливість заглянути усередину живого мозку й судити про порушення в ньому не по непрямих ознаках, а вивчати морфологічні зміни самого субстрату, диференціювати сіру й білу речовину. Технічний прогрес привів до вдосконалювання апаратур: з'явилися могутніші, швидкісні апарати, пристосовані для дослідження всього тіла пацієнта (мал. ЗО). Проблему диференціації органів і тканин, що мають рівну або дуже близьку щільність за шкалою Хаунсфілда, було вирішено шляхом внутрішньовенного контрастного посилення, тобто введення таких речовин в організм людини, які, накопичуючись в органах, змінювали їхню щільність. Методики контрастного посилення дають змогу розрізняти й визначати характер пухлин (новоутворень) на фоні м'яких тканин, що їх оточують, у тих випадках, коли вони не видимі при звичайному дослідженні.
Мал. 5. Дослідження всього тіла пацієнта Мал. 6. Спіральний рентгенівський томограф
На сьогодні нараховуються чотири покоління рентгенівських комп'ютерних томографів. Прикладом томографа третього покоління є спіральний томограф, названий так через обертальне переміщення віялового рентгенівського пучка, що створює траєкторію спіралі. Більшість сучасних установок в Україні — це апарати третього покоління. Якщо на апаратах першого покоління процес зчитування інформації і реконструювання одного зображення займав кілька хвилин, на апаратах другого — десятки секунд, то на томографах третього і четвертого поколінь — кілька секунд. Таким чином, щоб дослідити головний мозок на томографах першого покоління з товщиною зрізу 10 мм (тобто кількість зрізів — до 8), необхідно було затратити 8–10хв. У 2004 — 2005 роках було розроблено 32- і 64-зрізові мультиспіральні томографи, які є вершиною технічного прогресу (мал. ).
Недоліком КТ є створення променевого навантаження (рентгенівське випромінювання), тому застосування її без достатніх підстав (показань) небажане.