Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Estestenno-_nauchnye_osnovy_psikhologii.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
732.16 Кб
Скачать

33.Нервове волокно. Закони проведення збудження по нервовим волокнам. Синапси їх класифікація та будова. Механізм функціонування синапсів.Медіатори цнс.

НЕРВНОЕ ВОЛОКНО

(neurofibra), отросток нейрона (аксон), покрытый оболочками и проводящий нервные импульсы от перикариона. Диам. Н. в. колеблется от 0,0 до 1700 мкм, дл. может превышать 1 м. Мякотные (миелинизированные) Н. в. покрыты шванновской и миелиновой оболочками, а безмякотные (немиелинизированные) — только шванновской. В зависимости от скорости проведения возбуждения, длительности фаз потенциала действия и диаметра у теплокровных выделяют 3 осн. группы Н. в., обозначаемых А (подгруппы а, р 7, S), В и С. Диам. двигат. и чувствит. Н. в. гр. А 1—22 мкм, скорость проведения 5—120 м/с, гр. В (преим. преганглионарные Н. в.) соответственно 1—3,5 мкм и 3—18 м/с, гр. С (преим. постганглионарные Н. в.) 0,5— 2 мкм и 0,5—3 м/с. Скорость распространения нервных импульсов по Н. в. прямо пропорциональна его диаметру: с утолщением аксонов она увеличивается и всегда выше в миелинизированных Н. в. В них импульс распространяется не непрерывно, как в безмякотных, а скачками, от одного перехвата Ранвье к другому (салътаторное проведение). Н. в. составляют периферич. нервную систему и проводящие пути в ЦНС. Пучки Н. в. образуют нервы.

Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые.

Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декре-ментное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к«-». В месте выхода кругового тока повышается проницаемость плазматической мемб-раны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона.

В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому.

Существует три закона проведения раздражения по нервному волокну.

1.Закон анатомо-физиологической целостности.Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность.

2.Закон изолированного проведения возбуждения.Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмя-котных нервных волокнах.В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе.В мякотных нервных волокнах роль изолятора выполняет мие-линовая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки.В безмякотных нервных волокнах возбуждение передается изолированно.

3.Закон двустороннего проведения возбуждения.Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и цен-тробежно.

Синапси

Синапсы – это специализированная структура, которая обеспечивает передачу нервного импульса из нервного волокна на эффекторную клетку – мышечное волокно, нейрон или секреторную клетку.

Синапсы – это места соединения нервного отростка (аксона) одного нейрона с телом или отростком (дендритом, аксоном) другой нервной клетки (прерывистый контакт между нервными клетками).

Все синапсы можно классифицировать: 1) по их местоположению - центральные (головной и спинной мозг) и периферические; 2) по принадлежности к соотвествующим клеткам - нейро-нейрональные, нервно-мышечные, нейро-железистые (нейросекреторные); 3) по месту контакта в нейро-нерональных синапсах - аксо-аксональные, аксо-дендритические (дендритные), аксо-соматические, дендро-дендритические, дендро-соматические и др.; 4) по распположению относительно друг друга (Г.Шеперд) - последовательные синапсы, реципрокные синапсы, синаптические гломерулы (различным способом соединенные через синапсы клетки); 5) по развитию в онтогенезе - стабильные (например, синапсы дуг безусловных рефлексов) и динамические (появляются в процессе индивидуального развития); 6) по знаку их действия - возбуждающие и тормозящие. 7) по способу передачи сигнала - электрические (в которых сигналы передаются электрическим током) и химичекие (в которых передачиком или посредником явялется то или иное физиологичес¬ки активное вещество). Существуют и смешанные - элетрохимичес¬кие синапсы. 8) химические синапсы классифицируются - по форме контакта: терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона), - по природе медиатора: холинергические (медиатор -ацетилхолин), адренергические (норадреналин), дофаминнергические (дофамин) ГАМК-ергические (гамма-аминомасляная кислота), глицинергические, глутаматергичес- кие, аспартатергические, пуринергические (медиатор -АТФ), - по скорости передачи возбуждения (сигнала): быстрые возбужда-ющие (в передаче принимают участие классические медиаторы потенциал сохраняется короткий промежуток времеми) и медленные (локализованы в спинном мозге, относятся к пептидным синапсам, постсинаптический потенциалы после ритмической стимуляции сохраняются в течение нескольких минут)

строение

В структуре синапса различают три элемента: 1)пресинаптическую мембрану, образованную утолщением мембраны конечной веточки аксона; 2)синаптическую щель между нейронами; 3)постсинаптическую мембрану - утолщение прилегающей поверхности следующего нейрона.

Принципы работы синапса.

Передача возбуждения в синапсе представляет собой сложный процесс, который проходит в несколько стадий:

1.                  Синтез медиатора.

2.                  Секреция медиатора.

3.                  Взаимодействие медиатора с рецепторами постсинаптической мембраны.

4.                  Инактивация (полная утрата активности) медиатора.

 

При распространении сигнал по аксону достигает пресинаптической мембраны и вызывает ее перезарядку. Во время ПД пресинаптическая мембрана становится проницаемой для ионов Na и Ca, которые входят внутрь синаптической бляшки из синаптической щели, где способствуют замыканию связи между белками гексогональной решетки и синаптических пузырьков. Это приводит к выходу медиатора, его проникновению в синаптическую щель и диффузии его на постсинаптическую мембрану.

Достигнув ее, он взаимодействует с ее рецепторами, в результате чего открываются ионные каналы и осуществляется движение ионов по градиенту концентрации.

В результате формируется постсинаптический потенциал на постсинаптической мембране. Связь медиатора с рецепторами разрывается , 30-70% медиатора возвращается, часть разрушается. Синапс готов воспринимать новые медиаторы.

Медиаторы- (от лат. - посредник) – химические вещества, молекулы которых способны реагировать со специфическими рецепторами клеточной мембраны и изменять ее проницаемость для определенных ионов, вызывая возникновение (генерацию) ПД – активного электрического сигнала.

Выделяясь под влиянием нервных импульсов, медиаторы участвуют в их передаче с нервного окончания на рабочий орган и с одной нервной клетки на другую.

В ЦНС роль медиатора осуществляют – ацетилхолин, норадреналин, дофамин, серотонин, гамма аминомасляная и глутаминовая кислоты, глицин.

Основные медиаторы – ацетилхолин и норадреналин.

Медиаторы сами по себе не обладают возбуждающим и тормозящим действием.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]