- •Лекции по дисциплине «Использование вычислительной техники на автомобильном транспорте»
- •1 Понятие новых информационных технологий
- •Задачи и возможности новых информационных технологий и их применение на предприятиях автомобильного транспорта
- •1. Понятие новых информационных технологий.
- •2 Основные положения автоматизированных систем управления
- •3 Критерии качества информации и их влияние на принятие управленческих решений. Особенности информационных систем (ис)
- •3.1 Критерии качества информации:
- •3.2 Наиболее активные функции управления в атп
- •3.3 Особенности информационных систем (ис)
- •1. Критерии качества информации.
- •2. Наиболее активные функции управления в атп.
- •4 Структура информационной модели объекта управления. Типовая структура асу
- •4.1 Основные этапы анализа существующей системы управления
- •4.2 Типовая структура асу
- •4.3 Виды структур асу
- •4.4 Основные принципы создания асуп
- •5.2 Основные автоматизированные рабочие места:
- •6. Информационное обеспечение информационных систем (ис)
- •6.1 Особенности построения современных информационных систем
- •7. Техническое обеспечение информационных систем
- •7.1 Персональные компьютеры
- •7.2 Принтеры
- •7.3 Локальные сети
- •8. Программное обеспечение ис
- •8.1 Системное программное обеспечение
- •8.2 Сетевое программное обеспечение
- •8.3 Инструментальное программное обеспечение
- •8.4 Прикладное программное обеспечение
- •9. Организационное и правовое обеспечение ис
- •10. Безбумажные технологии и средства автоматической идентификации объектов.
- •10.3 Радиочастотная идентификация
- •10.4 Система контроля автобусного движения (скад)
- •10.5 Спутниковые системы
- •11 Использование Интернета при организации перевозок
- •12. Перспективы развития новых информационных технологий и асу на ат
- •4. Контрольные задания
- •1. Понятие новых информационных технологий.
- •10. Критерии качества информации.
- •14. Виды структур асу.
- •15. Основные принципы создания асуп.
- •6. Техническое обеспечение информационных систем.
- •Лекции по дисциплине «Использование вычислительной техники на автомобильном транспорте»
- •1.2 Управление процессами на автомобильном транспорте
- •Система мониторинга автотранспорта. Фактический адрес:194156, г. Санкт-Петербург, ул. Манчестерская, д. 10
- •Gps система слежения за транспортом Диспетчер
- •14 Основные типы задач, решаемых на предприятиях автомобильного транспорта
- •15. Регрессионный анализ результатов экспериментов.
- •15.1. Эмпирические функции регрессии
- •Выяснение общего вида этой формулы
- •Определение наилучших параметров её.
- •2.1.2 Метод наименьших квадратов.
- •2.1.3 Алгоритм определения параметров эмпирической формулы методом наименьших квадратов в Excel.
- •2.1.4 Определение уравнений регрессии с помощью функций excel
- •Загрузить модель
- •Сохранить модель
- •3. Задачи оптимизации.
- •А.В. Кузнецов, в.А.Сакович, н.И. Холод. Высшая математика. Математическое программирование., Минск, «Вышэйшая школа», 1994г.286 с., ил
- •3. 1 Общий случай задачи оптимизации
- •Существуют допустимые решения (т.Е. Решения, удовлетворяющие всем ограничениям и граничным условиям)
- •Есть целевая функция, показывающая в каком смысле принимаемое решение должно быть оптимальным, т.Е. Наилучшим из допустимых.
- •3.2 Краткая классификация методов математического программирования.
- •3.3 Формы записи задач линейного программирования.
- •3.4 Примеры задач линейного программирования.
- •3.4.1 Задача о наилучшем использовании ресурсов.
- •3.4.2 Задача о распределении заказа.
- •3.4.3 Задача о назначениях
- •2.4.4Транспортная задача.(Постановка задачи. Закрытая модель. Открытая модель. )
- •А.В. Кузнецов, в.А.Сакович, н.И. Холод. Высшая математика. Математическое программирование., Минск, «Вышэйшая школа», 1994г.286 с., ил
- •Сбалансированную транспортную. Для этого необходимо привести несбалансированную задачу к сбалансированной.
- •Решим ее введя в целевую функцию дополнительные затраты на штрафы (у нас дефицит).
- •1.2. Интерфейс пользователя
- •1.2.1. Меню
- •1.2.2. Панели инструментов
- •1.2.3 Настройка состава основных панелей
- •1.3.4. Рабочая область
- •1.2.4. Строка состояния
- •2. Редактирование документов
- •2.1. Работа с документами
- •2.2. Структура документа в MathCad.
- •2.3. Правка документа
- •3 Входной язык MathCad
- •3.1 Константы
- •3.2 Переменные
- •3.3 Векторы, матрицы
- •3.4 Встроенные функции и функции пользователя
- •5. Построение двумерного графика функции
- •16.4. Трехмерные графики
- •16.4.1. Создание трехмерных графиков
- •3D Bar Plot - график трехмерной гистограммы (рис. 16.35 и 16.36)
- •3D Scatter Plot - график множества точек (рис. 16.37 и 16.38)
- •Vector Field Plot - график векторного поля (рис. 16.39)
- •6. Решение уравнений в MathCad
- •6.2. Решение систем линейных уравнения
- •6. 3. Решение систем нелинейных уравнения
- •7. Структура решательного блока given
- •8 Регрессия
- •8.1. Линейная регрессия
- •15.2.2. Полиномиальная регрессия
- •15.2.3. Регрессия специального вида
- •5.. Решение задач оптимизации в MathCad
- •5.1 Задача о размещении заказа
- •5.2 Задача о наилучшем использовании ресурсов
- •5.3 Закрытая модель транспортной задачи
- •6.2. Язык программирования Mathcad
- •6.2.7. Возврат значения (return)
- •6.2.8. Перехват ошибок (on error)
- •6.3. Примеры программирования
7. Структура решательного блока given
Решательный блок GIVEN используется при употреблении функций Find и Minerr, Minimize и Maximize из категории Solving
Вначале записываются начальные значения вычисляемых величин. Здесь же определяется функция, которую необходимо оптимизировать
Затем пишется директива GIVEN
Затем записываются системы уравнений и неравенств, которые определяют систему ограничений. Необходимо помнить о том, что знаки равенств и неравенств записываются с употреблением палитры Boolean
Затем определяется решение с применением функций Find и Minerr, Minimize и Maximize
Функция Minerr(x,y,…) возвращает значения неизвестных x,y,…для приближенного решения системы уравнений.
Функция Minimize(f,var1,var2,….) возвращает значения var1,var2,…, которые обеспечивают функции f минимальное значение.
Функция Maximize(f,var1,var2,….) возвращает значения var1,var2,…, которые обеспечивают функции f максимальное значение.
8 Регрессия
Задачи математической регрессии имеют смысл приближения выборки данных (Xi..Yi некоторой функцией f (х), определенным образом минимизирующей совокупность ошибок |f(xi)-yi|). Регрессия сводится к подбору неизвестных коэффициентов, определяющих аналитическую зависимость f(х). В силу производимого действия большинство задач регрессии являются частным случаем более общей проблемы сглаживания данных.
Как правило, регрессия очень эффективна, когда заранее известен (или, по крайней мере, хорошо угадывается) закон распределения данных (xi, yi).
8.1. Линейная регрессия
Самый простой и наиболее часто используемый вид регрессии — линейная. Приближение данных (xi, yi) осуществляется линейной функцией у(х)=b+ах. На координатной плоскости (х,у) линейная функция, как известно, представляется прямой линией (рис. 15.12). Для нахождения коэффициентов а и в используется метод наименьших квадратов.
Рис. 15.12. Линейная регрессия (листинг 15.7 или 15.8)
Для расчета линейной регрессии в Mathcad имеются два дублирующих друг друга способа. Правила их применения представлены в листингах 15.7 и 15.8. Результат обоих листингов получается одинаковым (рис. 15.12).
line(x,y) — вектор из двух элементов (b,а) коэффициентов линейной регрессии b+а*х;
intercept (x,y) — коэффициент b линейной регрессии;
slope(x,y) — коэффициент а линейной регрессии;
х — вектор действительных данных аргумента;
у — вектор действительных данных значений того же размера.
Листинг 15.7. Линейная регрессия
Листинг 15.8. Другая форма записи линейной регрессии
15.2.2. Полиномиальная регрессия
В Mathcad реализована регрессия одним полиномом, отрезками нескольких полиномов, а также двумерная регрессия массива данных.
Полиномиальная регрессия
Полиномиальная регрессия означает приближение данных (xi, yi) полиномом k-й степени А(х)=а+bх+сх2+dх3+.. .+hxk (рис. 15.14). При k=1 полином является прямой линией, при k=2 — параболой, при k=3 — кубической параболой и т. д. Как правило, на практике применяются k<5.
Для построения регрессии полиномом k-й степени необходимо наличие по крайней мере (k+1) точек данных.
В Mathcad полиномиальная регрессия осуществляется комбинацией встроенной функции regress и полиномиальной интерполяции (см. разд. 15.1.2).
regress(x,y,k) — вектор коэффициентов для построения полиномиальной регрессии данных;
interp(s,x,y, t) — результат полиномиальной регрессии;
s=regress(x,y,k);
х — вектор действительных данных аргумента, элементы которого расположены в порядке возрастания;
у — вектор действительных данных значений того же размера;
k — степень полинома регрессии (целое положительное число);
t — значение аргумента полинома регрессии.
Для построения полиномиальной регрессии после функции regress Вы обязаны использовать функцию interp.
Рис. 15.14. Регрессия полиномами разной степени (коллаж результатов листинга 15.10 для разных k)
Пример полиномиальной регрессии квадратичной параболой приведен в листинге 15.10.
Листинг 15.10. Полиноминальная регрессия
