- •Лекции по дисциплине «Использование вычислительной техники на автомобильном транспорте»
- •1 Понятие новых информационных технологий
- •Задачи и возможности новых информационных технологий и их применение на предприятиях автомобильного транспорта
- •1. Понятие новых информационных технологий.
- •2 Основные положения автоматизированных систем управления
- •3 Критерии качества информации и их влияние на принятие управленческих решений. Особенности информационных систем (ис)
- •3.1 Критерии качества информации:
- •3.2 Наиболее активные функции управления в атп
- •3.3 Особенности информационных систем (ис)
- •1. Критерии качества информации.
- •2. Наиболее активные функции управления в атп.
- •4 Структура информационной модели объекта управления. Типовая структура асу
- •4.1 Основные этапы анализа существующей системы управления
- •4.2 Типовая структура асу
- •4.3 Виды структур асу
- •4.4 Основные принципы создания асуп
- •5.2 Основные автоматизированные рабочие места:
- •6. Информационное обеспечение информационных систем (ис)
- •6.1 Особенности построения современных информационных систем
- •7. Техническое обеспечение информационных систем
- •7.1 Персональные компьютеры
- •7.2 Принтеры
- •7.3 Локальные сети
- •8. Программное обеспечение ис
- •8.1 Системное программное обеспечение
- •8.2 Сетевое программное обеспечение
- •8.3 Инструментальное программное обеспечение
- •8.4 Прикладное программное обеспечение
- •9. Организационное и правовое обеспечение ис
- •10. Безбумажные технологии и средства автоматической идентификации объектов.
- •10.3 Радиочастотная идентификация
- •10.4 Система контроля автобусного движения (скад)
- •10.5 Спутниковые системы
- •11 Использование Интернета при организации перевозок
- •12. Перспективы развития новых информационных технологий и асу на ат
- •4. Контрольные задания
- •1. Понятие новых информационных технологий.
- •10. Критерии качества информации.
- •14. Виды структур асу.
- •15. Основные принципы создания асуп.
- •6. Техническое обеспечение информационных систем.
- •Лекции по дисциплине «Использование вычислительной техники на автомобильном транспорте»
- •1.2 Управление процессами на автомобильном транспорте
- •Система мониторинга автотранспорта. Фактический адрес:194156, г. Санкт-Петербург, ул. Манчестерская, д. 10
- •Gps система слежения за транспортом Диспетчер
- •14 Основные типы задач, решаемых на предприятиях автомобильного транспорта
- •15. Регрессионный анализ результатов экспериментов.
- •15.1. Эмпирические функции регрессии
- •Выяснение общего вида этой формулы
- •Определение наилучших параметров её.
- •2.1.2 Метод наименьших квадратов.
- •2.1.3 Алгоритм определения параметров эмпирической формулы методом наименьших квадратов в Excel.
- •2.1.4 Определение уравнений регрессии с помощью функций excel
- •Загрузить модель
- •Сохранить модель
- •3. Задачи оптимизации.
- •А.В. Кузнецов, в.А.Сакович, н.И. Холод. Высшая математика. Математическое программирование., Минск, «Вышэйшая школа», 1994г.286 с., ил
- •3. 1 Общий случай задачи оптимизации
- •Существуют допустимые решения (т.Е. Решения, удовлетворяющие всем ограничениям и граничным условиям)
- •Есть целевая функция, показывающая в каком смысле принимаемое решение должно быть оптимальным, т.Е. Наилучшим из допустимых.
- •3.2 Краткая классификация методов математического программирования.
- •3.3 Формы записи задач линейного программирования.
- •3.4 Примеры задач линейного программирования.
- •3.4.1 Задача о наилучшем использовании ресурсов.
- •3.4.2 Задача о распределении заказа.
- •3.4.3 Задача о назначениях
- •2.4.4Транспортная задача.(Постановка задачи. Закрытая модель. Открытая модель. )
- •А.В. Кузнецов, в.А.Сакович, н.И. Холод. Высшая математика. Математическое программирование., Минск, «Вышэйшая школа», 1994г.286 с., ил
- •Сбалансированную транспортную. Для этого необходимо привести несбалансированную задачу к сбалансированной.
- •Решим ее введя в целевую функцию дополнительные затраты на штрафы (у нас дефицит).
- •1.2. Интерфейс пользователя
- •1.2.1. Меню
- •1.2.2. Панели инструментов
- •1.2.3 Настройка состава основных панелей
- •1.3.4. Рабочая область
- •1.2.4. Строка состояния
- •2. Редактирование документов
- •2.1. Работа с документами
- •2.2. Структура документа в MathCad.
- •2.3. Правка документа
- •3 Входной язык MathCad
- •3.1 Константы
- •3.2 Переменные
- •3.3 Векторы, матрицы
- •3.4 Встроенные функции и функции пользователя
- •5. Построение двумерного графика функции
- •16.4. Трехмерные графики
- •16.4.1. Создание трехмерных графиков
- •3D Bar Plot - график трехмерной гистограммы (рис. 16.35 и 16.36)
- •3D Scatter Plot - график множества точек (рис. 16.37 и 16.38)
- •Vector Field Plot - график векторного поля (рис. 16.39)
- •6. Решение уравнений в MathCad
- •6.2. Решение систем линейных уравнения
- •6. 3. Решение систем нелинейных уравнения
- •7. Структура решательного блока given
- •8 Регрессия
- •8.1. Линейная регрессия
- •15.2.2. Полиномиальная регрессия
- •15.2.3. Регрессия специального вида
- •5.. Решение задач оптимизации в MathCad
- •5.1 Задача о размещении заказа
- •5.2 Задача о наилучшем использовании ресурсов
- •5.3 Закрытая модель транспортной задачи
- •6.2. Язык программирования Mathcad
- •6.2.7. Возврат значения (return)
- •6.2.8. Перехват ошибок (on error)
- •6.3. Примеры программирования
3D Bar Plot - график трехмерной гистограммы (рис. 16.35 и 16.36)
Для построения графика поверхности необходимо воспользоваться клавишей 3D Bar Plot панели инструментов Graph и следовать указаниям, описанным выше.
Рис. 16.35. Быстрое построение графика трехмерной гистограммы функции (листинг 16.3)
Рис. 16.36. График трехмерной гистограммы, заданный матрицей (листинг 16.4)
Рис. 16.37. Быстрое построение графика множества точек функции (листинг 16.3)
Рис. 16.38. График множества точек, заданный матрицей (листинг 16.4)
3D Scatter Plot - график множества точек (рис. 16.37 и 16.38)
Для построения графика поверхности необходимо воспользоваться клавишей 3D Scatter Plot панели инструментов Graph и следовать указаниям, описанным выше.
Vector Field Plot - график векторного поля (рис. 16.39)
График векторного поля несколько отличается от остальных типов двумерных графиков. Его смысл заключается в построении некоторого вектора в каждой точке плоскости XY. Чтобы задать вектор на плоскости, требуются два скалярных числа. Поэтому в Mathcad принято, что векторное поле задает комплексная матрица. Действительные части каждого ее элемента задают проекцию вектора на ось х, а мнимые — на ось у.
Рис. 16.39. Графики векторного поля, заданные матрицами (листинг 16.4)
Приведенные рисунки являются лишь первым шагом в создании красочных графиков. О том, как правильно отформатировать вновь созданные графики, чтобы они приобрели оптимальный с математической точки зрения и эффектный вид, рассказано в следующих разделах.
Улучшить трехмерное представление графика часто позволяет применение к исходным данным интерполяции (см. разд. "Многомерная интерполяция" гл. 15
6. Решение уравнений в MathCad
6.1. Для решения уравнений в MathCAD можно использовать:
Меню – Simbolics – Variable – Solve
Команду Solve из палитры Symbolic
Использовать встроенную функцию root(f(x),x[,a,b]) категории Solving
Использование функции root требует задание начального приближения
Графическое решение уравнения sin(x)=0
Для нахождения корней многочлена используется встроенная функция polyroots(v) категории Solving, которая возвращает вектор, содержащий все корни многочлена степени n, коэффициенты которого находятся в векторе V
6.2. Решение систем линейных уравнения
А) матричным способом
В) С помощью встроенной функции Find(x,y,…) категории Solving. Функция Find используется в решательном блоке GIVEN и возвращает значения x,y,…, удовлетворяющие ограничениям, равенствам и неравенствам, которые определены в блоке решения уравнений.
6. 3. Решение систем нелинейных уравнения
Для решения системы нелинейных уравнений используется встроенная функция Find и Minerr из категории Solving.
Пример. Найти решение системы уравнений:
В MathCad эта система нелинейных уравнений решается следующим образом:
Вычислительный блок использует константу CTOL в качестве погрешности выполнения уравнений, введенных после ключевого слова Given. Например, если CTOL=0.001, то уравнение х=10 будет считаться выполненным и при х=10.001, и при х=9.999. Другая константа TOL определяет условие прекращения итераций численным алгоритмом Значение CTOL может быть задано пользователем так же как и TOL, например, CTOL:=0.01. По умолчанию принято, что CTOL=TOL=0.001, но Вы по желанию можете переопределить их.
