- •Лекции по дисциплине «Использование вычислительной техники на автомобильном транспорте»
- •1 Понятие новых информационных технологий
- •Задачи и возможности новых информационных технологий и их применение на предприятиях автомобильного транспорта
- •1. Понятие новых информационных технологий.
- •2 Основные положения автоматизированных систем управления
- •3 Критерии качества информации и их влияние на принятие управленческих решений. Особенности информационных систем (ис)
- •3.1 Критерии качества информации:
- •3.2 Наиболее активные функции управления в атп
- •3.3 Особенности информационных систем (ис)
- •1. Критерии качества информации.
- •2. Наиболее активные функции управления в атп.
- •4 Структура информационной модели объекта управления. Типовая структура асу
- •4.1 Основные этапы анализа существующей системы управления
- •4.2 Типовая структура асу
- •4.3 Виды структур асу
- •4.4 Основные принципы создания асуп
- •5.2 Основные автоматизированные рабочие места:
- •6. Информационное обеспечение информационных систем (ис)
- •6.1 Особенности построения современных информационных систем
- •7. Техническое обеспечение информационных систем
- •7.1 Персональные компьютеры
- •7.2 Принтеры
- •7.3 Локальные сети
- •8. Программное обеспечение ис
- •8.1 Системное программное обеспечение
- •8.2 Сетевое программное обеспечение
- •8.3 Инструментальное программное обеспечение
- •8.4 Прикладное программное обеспечение
- •9. Организационное и правовое обеспечение ис
- •10. Безбумажные технологии и средства автоматической идентификации объектов.
- •10.3 Радиочастотная идентификация
- •10.4 Система контроля автобусного движения (скад)
- •10.5 Спутниковые системы
- •11 Использование Интернета при организации перевозок
- •12. Перспективы развития новых информационных технологий и асу на ат
- •4. Контрольные задания
- •1. Понятие новых информационных технологий.
- •10. Критерии качества информации.
- •14. Виды структур асу.
- •15. Основные принципы создания асуп.
- •6. Техническое обеспечение информационных систем.
- •Лекции по дисциплине «Использование вычислительной техники на автомобильном транспорте»
- •1.2 Управление процессами на автомобильном транспорте
- •Система мониторинга автотранспорта. Фактический адрес:194156, г. Санкт-Петербург, ул. Манчестерская, д. 10
- •Gps система слежения за транспортом Диспетчер
- •14 Основные типы задач, решаемых на предприятиях автомобильного транспорта
- •15. Регрессионный анализ результатов экспериментов.
- •15.1. Эмпирические функции регрессии
- •Выяснение общего вида этой формулы
- •Определение наилучших параметров её.
- •2.1.2 Метод наименьших квадратов.
- •2.1.3 Алгоритм определения параметров эмпирической формулы методом наименьших квадратов в Excel.
- •2.1.4 Определение уравнений регрессии с помощью функций excel
- •Загрузить модель
- •Сохранить модель
- •3. Задачи оптимизации.
- •А.В. Кузнецов, в.А.Сакович, н.И. Холод. Высшая математика. Математическое программирование., Минск, «Вышэйшая школа», 1994г.286 с., ил
- •3. 1 Общий случай задачи оптимизации
- •Существуют допустимые решения (т.Е. Решения, удовлетворяющие всем ограничениям и граничным условиям)
- •Есть целевая функция, показывающая в каком смысле принимаемое решение должно быть оптимальным, т.Е. Наилучшим из допустимых.
- •3.2 Краткая классификация методов математического программирования.
- •3.3 Формы записи задач линейного программирования.
- •3.4 Примеры задач линейного программирования.
- •3.4.1 Задача о наилучшем использовании ресурсов.
- •3.4.2 Задача о распределении заказа.
- •3.4.3 Задача о назначениях
- •2.4.4Транспортная задача.(Постановка задачи. Закрытая модель. Открытая модель. )
- •А.В. Кузнецов, в.А.Сакович, н.И. Холод. Высшая математика. Математическое программирование., Минск, «Вышэйшая школа», 1994г.286 с., ил
- •Сбалансированную транспортную. Для этого необходимо привести несбалансированную задачу к сбалансированной.
- •Решим ее введя в целевую функцию дополнительные затраты на штрафы (у нас дефицит).
- •1.2. Интерфейс пользователя
- •1.2.1. Меню
- •1.2.2. Панели инструментов
- •1.2.3 Настройка состава основных панелей
- •1.3.4. Рабочая область
- •1.2.4. Строка состояния
- •2. Редактирование документов
- •2.1. Работа с документами
- •2.2. Структура документа в MathCad.
- •2.3. Правка документа
- •3 Входной язык MathCad
- •3.1 Константы
- •3.2 Переменные
- •3.3 Векторы, матрицы
- •3.4 Встроенные функции и функции пользователя
- •5. Построение двумерного графика функции
- •16.4. Трехмерные графики
- •16.4.1. Создание трехмерных графиков
- •3D Bar Plot - график трехмерной гистограммы (рис. 16.35 и 16.36)
- •3D Scatter Plot - график множества точек (рис. 16.37 и 16.38)
- •Vector Field Plot - график векторного поля (рис. 16.39)
- •6. Решение уравнений в MathCad
- •6.2. Решение систем линейных уравнения
- •6. 3. Решение систем нелинейных уравнения
- •7. Структура решательного блока given
- •8 Регрессия
- •8.1. Линейная регрессия
- •15.2.2. Полиномиальная регрессия
- •15.2.3. Регрессия специального вида
- •5.. Решение задач оптимизации в MathCad
- •5.1 Задача о размещении заказа
- •5.2 Задача о наилучшем использовании ресурсов
- •5.3 Закрытая модель транспортной задачи
- •6.2. Язык программирования Mathcad
- •6.2.7. Возврат значения (return)
- •6.2.8. Перехват ошибок (on error)
- •6.3. Примеры программирования
А.В. Кузнецов, в.А.Сакович, н.И. Холод. Высшая математика. Математическое программирование., Минск, «Вышэйшая школа», 1994г.286 с., ил
Такие методы объединяются под общим названием – математическое программирование.
Математическое программирование – это область математики, разрабатывающая теорию и численные методы решения многомерных экстремальных задач с ограничениями, т.е. задач на экстремум функций многих переменных с ограничениями на область изменения этих переменных.
3. 1 Общий случай задачи оптимизации
Вначале остановимся (чтобы понять суть) на самом простом примере.
Необходимо спроектировать бак, имеющий форму прямоугольного параллелепипеда, объем которого
где а, в, с - стороны бака.
Требуется определить размеры бак, объемом 2000, чтобы на его изготовление пошло как можно меньше материала, площадь которого
Т.е. нам необходимо минимизировать величину S при условии, что V=2000/
Или Z=S = 2*[a*b+(a+b)*h] min, a*b*h=2000
К этому очевидно стоит добавить очевидное, что все стороны прямоугольника должны быть положительны, т.е. а,b,с>0.
Вторая задача, как спроектировать бак, чтобы длина сварного шва была минимальной, т.е.
Z=L=2*(a+2*b)+hmin, т.е выбрать заданный вариант в заданном смысле.
Одна и та же практическая задача в зависимости от постановки и математического описания может приводить к разным задачам оптимизации.
Если обозначим через х1 =а, х2 =b, х3 =h, тогда
Z=F=2*[x1 *x2 +( x1 + x2 )*x3 ]min
x1* x2* x3= 2000
x1, x2, x3>0
В общем случае задача оптимизации запишется в следующем виде:
Здесь
ЦФ – целевая функция или критерий оптимизации показывает, в каком смысле решение должно быть оптимальным, т.е. наилучшим. При этом возможны 3 вида назначения целевой функции максимизация минимизация назначение заданного значения
ОГР – ограничения устанавливают зависимости между переменными. Они могут быть
как односторонние
так
и двухсторонние
ГРУ – граничные условия показывают, в каких пределах могут быть значения искомых переменных в оптимальном решении.
Решение задачи, удовлетворяющее всем ограничениям и граничным условиям, называется допустимым.
Важной характеристикой задачи оптимизации является ее размерность, определяемая
Числом переменных «n»
И числом ограничений «m»
Непременное требование для задач оптимизации это n>m
Объясним это.
Между n и m возможны соотношения:
n<m
Например: Есть ограничения
х1 + 2 = 5
х1 - 8 = 15
Получим из первого ограничения х1=3, из второго х1=7. Здесь n=1, m=2 . Очевидно, что такие задачи решения (ограничения) не имеют.
n=m
Например
х1 + х2 = 5
х1 - х2 = 1
Здесь n=2, m=2. Такое соотношение n и m – это необходимое условие для решения системы уравнений. Такую систему, можно рассматривать, как задачу оптимизации, имеющую одно допустимое решение, и решать ее как обычную задачу оптимизации, назначая в качестве целевой функции любую переменную.
n>m
Например
х1 + х2 = 5;
Здесь n=2, m=1. В этом случае может быт бесчисленное множество значений х1 , х2 , которые удовлетворяют данному уравнению.
Задача имеет оптимальное решение, если она удовлетворяет двум требованиям:
