Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы NEW.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
421.11 Кб
Скачать

Вопрос 5): Модель строения атома Резерфорда.

П ланетарная модель атома, или модель Резерфорда, - предложил Эрнест Резерфорд в результате эксперимента с рассеиванием альфа-частиц. По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны, - подобно тому, как планеты движутся вокруг Солнца.

Недостаток: с точки зрения классической электродинамики, электрон, двигаясь вокруг ядра, должен был бы излучать непрерывно и очень быстро, потеряв энергию, упасть на ядро.

Вопрос 6): теория строения атома Бора. Недостатки этой теории.

БМА— полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка.

 где   — излучённая (поглощённая) энергия,   — номера квантовых состояний. В спектроскопии   и   называются термами.

Правило квантования момента импульса:   

Недостатки теории Бора – 1) Не смогла объяснить интенсивность (скалярная, количественно характеризующая мощность, переносимую волной в направлении распространения) спектральных линий. 2) Справедлива только для водородоподобных атомов и не работает для атомов, следующих за ним в таблице Менделеева. 3) Теория Бора логически противоречива: не является ни классической, ни квантовой. В системе двух уравнений, лежащих в её основе, одно — уравнение движения электрона — классическое, другое — уравнение квантования орбит — квантовое.

Теория Бора являлась недостаточно последовательной и общей. Поэтому она в дальнейшем была заменена современной квантовой механикой, основанной на более общих и непротиворечивых исходных положениях. Сейчас известно, что постулаты Бора являются следствиями более общих квантовых законов. Но правила квантования широко используются и в наши дни как приближенные соотношения: их точность часто бывает очень высокой.

Вопрос 7): принципы квантовой механики: дискретность энергии, корпускулярно-волновой дуализм, принцип неопределенности Гейзенберга.

Дискретность энергии – Квантовая гипотеза Планка состояла в том, что для элементарных частиц, любая энергия поглощается или испускается только дискретными порциями (квантами). Эти порции состоят из целого числа квантов с такой энергией  , что эта энергия пропорциональна частоте ν с коэффициентом пропорциональности, определённым по формуле: Е=аш*ню.

Корпускуля́рно-волново́й дуали́зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Де Бройль выдвинул идею о том, что волновой характер распространения, установленный для фотонов, имеет универсальный характер. Он должен проявляться для любых частиц, обладающих импульсом  . Все частицы, имеющие конечный импульс  , обладают волновыми свойствами, в частности подвержены интерференции и дифракции.

Формула де Бройля устанавливает зависимость длины волны  , связанной с движущейся частицей вещества, от импульса   частицы:

Формула де Бройля экспериментально подтверждается опытами по рассеянию электронов и других частиц на кристаллах и по прохождению частиц сквозь вещества.

Принцип неопределенности Гейзенберга – 1) Неопределенность между координатой и импульсом

Пусть   — среднеквадратическое отклонение координаты частицы  , движущейся вдоль оси  , и   — среднеквадратическое отклонение ее импульса. Величины   и  связаны следующим неравенством:

где   — постоянная Планка, а 

Согласно соотношению неопределённостей, невозможно абсолютно точно определить одновременно координаты и импульс частицы. С повышением точности измерения координаты, максимальная точность измерения импульса уменьшается и наоборот.

2) Неопределенность между энергией и временем

Пусть ΔЕ — среднеквадратическое отклонение энергии частицы, и Δt — время, требуемое для обнаружения частицы. Время Δt для обнаружения частицы с энергией E±ΔЕ определяется следующим неравенством: