Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
geofi_ekzamen.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.89 Mб
Скачать

4. Методика гравиметрической съемки.

Общая характеристика методики гравиразведки. Методика гравиразведки - это целая совокупность тесно связанных принципов, объясняющих выбор тех или иных решений при проведении работ в зависимости от геологической задачи, имеющихся материальных и людских ресурсов. Эти решения касаются выбора конкретной аппаратуры, проектной точности съемки, густоты сети наблюдений, направления профилей, способа обработки данных и представления результатов исследований. Прежде всего следует различать виды работ по месту их проведения. Здесь выделяют наземную, морскую, воздушную, подземную и скважинную съемки. Не менее важно разделение по масштабу работ. Съемки, проводимые для выявления региональных аномалий и наиболее общих закономерностей структуры поля в масштабах 1 : 200 000 и мельче, называют региональными. Они дают конкретные сведения лишь о глубинном строении литосферы. Однако по результатам региональных съемок можно выделить отдельные крупные аномальные зоны, где затем производятся так называемые поисковые съемки. Они выполняются в масштабах 1 : 100 000 - 1 : 50 000 и обычно направлены, как и следует из их названия, на поиск месторождений полезных ископаемых. Если они дают положительный результат, то это и является основанием предполагать перспективность данного региона и проведения разведочных съемок в масштабе крупнее 1 : 10 000.

Наземная гравиметровая съемка. Наземная съемка с гравиметрами иногда называется гравиметровой. Чаще всего применяется пешеходная съемка, реже для перемещения между пунктами используется автотранспорт. Его применение позволяет сократить промежутки времени между наблюдениями на разных точках, что повышает производительность работ, а также их точность, поскольку позволяет снижать влияние сползания нуль-пункта. Однако использование автотранспорта повышает стоимость работ и часто неосуществимо из-за отсутствия дорог. Эпизодически (как правило, при мелкомасштабных съемках) применяется авиатранспорт. Обычно используется площадная съемка, при которой некоторый участок покрывается сетью наблюдений. Маршрутная съемка проводится по отдельному профилю и не дает достаточной информации о структуре поля. Она применяется лишь при рекогносцировочных и поисковых работах. Одним из важнейших этапов методики является выбор масштаба съемки. От него зависит и густота сети, поскольку расстояние между профилями на итоговой карте не должно превышать 1 см в масштабе съемки. Например, при проведении разведочной съемки в масштабе 1 : 10 000 расстояние между профилями должно составлять не более 100 м. Шаг по профилю (т.е. расстояние между точками профиля) либо равен расстоянию между профилями (при квадратной съемке), либо меньше него, но не более чем в 5 раз (при прямоугольной съемке). Профили располагаются вкрест ожидаемого простирания объектов аномальной плотности. Длина профиля должна в 5 - 10 раз превышать ширину искомых тел. Для привязки точек на местности, внесения редукций необходимо проведение геодезических работ, предшествующих гравиметрическим. Наличие заранее подготовленных топографических карт и карт редукций существенно облегчает работу. Привязка точек производится по аэрофотоснимкам или с помощью теодолитных работ и нивелировки местности. Однако наиболее высокую точность обеспечивает привязка с помощью спутников. Для этого имеется специальная аппаратура, например, GPS. Методическими инструкциями рекомендуется выполнять определенные соотношения между масштабами съемок, погрешностью топопривязок, густотой сети наблюдения и проектной точностью.Съемки проводятся рейсами, начинающимися и заканчивающимися на опорных пунктах. Часть рейса между двумя опорными пунктами называется звеном. Опорная сеть разбивается для учета сползания нуль-пункта и нахождения абсолютных значений ускорения силы тяжести. Она включает до 5 - 10% от общего числа точек наблюдения, равномерно распределенных по площади. Точность определения ускорения силы тяжести на опорных точках должна в 1,5 - 2 раза превышать точность рядовых наблюдений. Это достигается использованием более высокоточных приборов, многократными измерениями на опорных точках, сокращения промежутка времени между измерениями на соседних точках путем использования транспорта. При создании опорной сети от 50 до 100% всех наблюдений должны составлять повторные (контрольные). Существует несколько способов разбивки опорной сети. Широко распространены измерения по центральной системе, когда один из опорных пунктов (центральный) имеет связи со всеми остальными, т.е. соединен с каждым из них одним звеном. Иногда разбивка сети осуществляется по системам, не предусматривающим наличия центральной точки. В нашей стране существует так называемая государственная сеть, включающая в себя пункты 1, 2 и 3 классов точности, на которых ускорение силы тяжести измерено с высокой точностью. Расстояния между этими пунктами составляют около 10 км, что не позволяет использовать их для выявления аномальных значений поля силы тяжести. Однако, поскольку на них известны абсолютные значения ускорения силы тяжести, к ним осуществляется привязка опорных сетей. Необходимо определять точность опорной сети, характеризующуюся средней квадратичной ошибкой . Она получается по контрольным наблюдениям и рассчитывается по формуле: , где - погрешности ускорения силы тяжести по контрольным наблюдениям (разность между основным и контрольным замером), m - общее число всех наблюдений, включая контрольные, n - число контрольных точек. Съемкам на рядовой сети предшествует исследование гравиметров, включающее в себя определение сползания нуль-пункта. По этим данным выделяют промежуток времени, в течение которого сползание нуль-пункта можно считать линейно зависящим от времени. При рядовой съемке по истечении данного промежутка (1 - 2 часа) необходимо брать замер на одном из опорных пунктов. Съемка на рядовых пунктах ведется как путем однократных наблюдений, так и с повторениями при обратном ходе, позволяющем более гибко учитывать сползание нуль-пункта. Для контроля точности рядовой съемки используются повторные наблюдения на контрольных точках, составляющих не менее 5 - 10 % от общего числа точек. По ним рассчитывается среднеквадратичная ошибка рядовой сети по формуле: , где n - число контрольных точек.

Обработка данных гравиметровых съемок. При первичной обработке гравиметровых съемок для каждой точки наблюдений вычисляются аномалии Фая и Буге. Вычисление аномалий вручную представляет трудоемкую задачу и давно не практикуется. Для этих целей эффективно используются персональные ЭВМ, поскольку за последние годы накопился большой объем соответствующего программного обеспечения. Далее рассчитывается общая погрешность выполненных съемок.

В результате гравиметровой съемки строятся графики и карты аномалий Буге.

Методики других видов гравиразведки. Помимо наземных гравиметровых съемок, существуют также морские, авиационные, подземные, скважинные, а также вариометрические и градиентометрические съемки.

1. Морские гравиметрические работы делят на надводные, подводные и донные. Надводные проводятся на кораблях и отличаются наиболее сложной используемой аппаратурой и обработкой из-за наличия ускорений, силы тяжести, обусловленных качкой. Приборы помещают в карданов подвес или на гироплатформы, обеспечивающие их постоянное вертикальное положение. Съемки проводятся непрерывно в движении по профилям (галсам) (при комплексных геофизических исследованиях) либо по площади (когда гравитационные исследования являются основными). Наблюдения проводятся по системе субпараллельных профилей, пересеченных несколькими контрольными. Так же, как при наземных съемках, используются опорные точки, на которых начинается и заканчивается каждый рейс. Они располагаются в портах и отличаются повышенной точностью проведенных измерений. Для привязки точек используется радиогеодезический способ. Точность определения приращений силы тяжести при надводных съемках достигает 1 мГал. Более высокой точностью отличаются измерения, проводимые на подводных лодках, поскольку в этом случае меньше влияние возмущающих ускорений.

Принципиально отличаются от исследований в движении донные исследования. Гравиметр помещается в контейнер и опускается на дно. С помощью карданова подвеса или гироплатформ он принимает вертикальное положение. Сигнал в виде электрических импульсов поступает на корабль. Работы этим методом проводятся на глубинах до 150 - 200 м, т.е. в области континентального шельфа, неглубоких морей и озер. На мелководье вблизи берега применяются погружаемые на дно гравиметры, по характеристикам близкие к наземным. Точность таких съемок также обычно соответствует точности наземных.

2. Иногда с помощью специальных гравиметров проводятся съемки на самолетах и вертолетах, движущихся на высотах порядка 100 - 150 м со скоростью 100 - 200 км/ч. Эти работы осложняются наличием долгопериодных возмущающих ускорений (десятки секунд), которые трудно устранить фильтрацией, а также высокочастотных ускорений. Аэросъемки, аналогично морским, проводят по субпараллельным профилям, которые пересечены несколькими опорными, что позволяет учесть сползание нуль-пункта.

3. Под подземной гравиразведкой понимаются съемки в горных выработках и шахтах. В удобных местах располагаются опорные точки, привязанные к государственным гравиметрическим пунктам на поверхности. Расстояния между рядовыми точками при подземных съемках обычно значительно меньше, чем при наземных. Подземные работы позволяют исследовать тела с аномальной плотностью сбоку и снизу, но требуют учета воздействия вышележащих толщ.

4. Аналогичными преимуществами и недостатками обладают скважинные гравиметрические измерения. Кроме того, они должны быть устойчивы к высокому давлению, температуре, "уметь" принимать вертикальное положение в наклонной скважине. Точки наблюдений располагаются через десятки метров по стволу скважины, что связано со сравнительно невысокой точностью измерений.

5. При съемках с вариометрами и градиентометрами измеряются вторые производные гравитационного потенциала. Они применяются при детальных разведочных работах, причем преимущественно на небольших площадях, где есть аномалии, обусловленные наличием рудных тел и др. Данные работы требуют еще более точной топогеодезической основы, чем съемки с гравиметрами. Они обычно являются площадными, причем расстояния между точками зависят от масштаба съемки и изменяются от 5 до 100 м. Если рельеф в районе работ спокойный и в радиусе 50 - 100 м проведена нивелировка, то можно достигнуть точности в первые этвеши. Результаты вариометрических и градиентометрических съемок изображают в виде карт и графиков вторых производных потенциала, векторов градиента, карт кривых уровенной поверхности. Применяется и подземная вариометрическая и градиентометрическая съемки, направленные на детализацию строения шахтных и рудных полей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]