
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки я тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела вокруг неподвижной оси
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела 71
- •§ 3. Динамика вращательного движения твердого тела 73
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§4. Силы в механике
- •§ 4. Силы в механике
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 8. Молекулярное строение вещества
- •Глава 2
- •§ 8. Молекулярное строение вещества. Законы идеальных газов
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 9. Молекулярно-киыетическая теория газов
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10 Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§9, Основные формулы).
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •Глава 3
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля. Электрическое смешение
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 15. Потенциал. Энергия системы электрических зарядов 233
- •§ 15. Потенциал. Энергия системы электрических зарядов. Работа по перемещению заряда в поле
- •§ 15. Потенциал. Энергия системы электрических зарядов 235
- •§ 15. Потенциал. Энергия системы электрических зарядов 237
- •§ 15. Потенциал. Энергия системы электрических зарядов 239
- •§ 15. Потенциал. Энергия системы электрических зарядов 241
- •§ 15. Потенциал. Энергия системы электрических зарядов 243 Выполнив вычисления по полученной формуле, найдем v0 - 2,35 • 106 м/с.
- •§ 15. Потенциал. Энергия системы электрических зарядов 245
- •§ 15. Потенциал. Энергия системы электрических зарядов 247
- •§ 15. Потенциал. Энергия системы электрических зарядов 249
- •§ 15. Потенциал. Энергия системы электрических зарядов 251
- •§ 15. Потенцией!. Энергия системы электрических зарядов 253
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков 259
- •§16. Электрический диполь. Свойства диэлектриков 261
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков 265
- •§ 16. Электрический диполь. Свойства диэлектриков Электронная и атомная поляризации
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 18. Энергия заряженного проводника
- •§ 18. Энергия заряженного проводника. Энергия электрического поля
- •§ 18. Энергия заряженного проводники.
- •§ 18. Энергия заряженного проводника
- •§ 18. Энергия заряженного проводника
- •Глава 4
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •Глава 5
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное ладе постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 22. Сила, действующая на проводник с током в магнитном поле
- •§ 22. Сила, действующая на проводник с током в магнитном поле 321
- •§22. Сила, действующая на проводник с током в магнитном поле 325
- •§ 22. Сила, действующая на проводник с током в магнитном поле 327
- •§22. Сила, действующая на проводник с током в магнитном поле 329
- •§22. Сила, действующая на проводник с током в магнитном поле 331
- •§ 22. Сила,, действующая на проводник с током в магнитном поле 333
- •§ 23. Сила, действующая назаряд, движущийся в магнитном поле 335
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле
- •§23. Сила, действующая назаряд, движущийся в магнитном поле 337
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле 339
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле 341
- •§23. Сила, действующая на заряд, движущийся в магнитном поле 343
- •§24. Закон полного тока. Магнитный поток. Магнитные цепи 345
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 347
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 349
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 351
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Работа по перемещению проводника
- •§ 25. Электромагнитная индукция. Индуктивность
- •§25. Электромагнитная индукция. Индуктивность 357
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойсхва вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 28. Геометрическая оптика
- •Глава 6
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 29. Фотометрия
- •§ 29. Фотометрия
- •§ 29. Фотометрия
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§31. Дифракция света
- •§ 31. Дифракция света
- •§31. Дифракция света
- •§ 31. Дифракция света
- •§ 31. Дифракция света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 34. Законы теплового излучения
- •Глава 7
- •§ 34. Законы теплового излучения
- •§ 34. Законы теплового излучения
- •§ 35. Фотоэлектрический эффект
- •§ 35. Фотоэлектрический эффект
- •§ 36. Давление света. Фотоны
- •§ 36. Давление света. Фотоны
- •§ 36. Давление света. Фотоны
- •§ 37. Эффект Комптона
- •§ 37. Эффект Комптона
- •§ 37. Эффект Комптона
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 39. Рентгеновское излучение
- •§ 39. Рентгеновское излучение
- •§ 39. Рентгеновское излучение
- •Глава 8
- •§ 40. Строение атомных ядер
- •§ 40. Строение атомных ядер
- •§ 40. Строение атомных ядер
- •§41. Радиоактивность
- •§ 41. Радиоактивность
- •§41. Радиоактивность
- •§ 42. Элементы дозиметрии ионизирующих излучении
- •§ 42. Элементы дозиметрии ионизирующих излучений
- •§ 42. Элементы дозиметрии ионизирующих излучений 465
- •§ 42. Элементы дозиметрии ионизирующих излучений 467
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§44. Ядерные реакции
- •§ 44. Ядерные реакции
- •§44. Ядерные реакции
- •§ 44. Ядерные реакции
- •§ 45. Волновые свойства микрочастиц
- •Глава 9
- •§ 45. Волновые свойства микрочастиц
- •§ 45. Волновые свойства микрочастиц
- •§ 45. Волновые свойства микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 49. Элементы кристаллографии
- •Глава 10
- •§ 49. Элементы кристаллографии
- •§ 49. Элементы кристаллографии
- •§ 49. Элементы кристаллографии
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§50. Тепловые свойства
- •§51. Электрические и магнитные свойства твердых тел 547
- •§ 51. Электрические и магнитные свойства твердых тел
- •§51. Электрические и магнитные свойства твердых тел 549
- •§ 51. Электрические и магнитные свойства твердых тел 551
- •§51. Электрические и магнитные свойства твердых тел 553
- •§51. Электрические и магнитные свойства твердых тел 555
- •§ 51. Электрические и магнитные свойства твердых тел 557
§ 15. Потенциал. Энергия системы электрических зарядов 233
поля в пяти областях (I, II, III, IV, V). 2. Вычислить напряжен-ность ЕА поля в точке А с координатой х = 3d. 3. Построить график Е(х) в единицах d/
Рис. 4.32
Рис. 14.31
14.75*. Две бесконечные пластины толщиной d и 3d (d = 1 см) расположены параллельно друг другу на расстоянии равном d. На пластинах равномерно распределены заряды с объемными плот¬ностями 2р и — р (р = 20мкКл/м3) (рис. 14.32). 1. Используя теорему Остроградского-Гаусса и принцип суперпозиции электри¬ческих полей, найти выражения для напряженности Е(х) элек¬трического поля в пяти областях (I, II, III, IV, V). 2. Вычислить напряженность ЕА поля в точке А с координатой х = 3d. 3. По¬строить график Е(х) в единицах d/
§ 15. Потенциал. Энергия системы электрических зарядов. Работа по перемещению заряда в поле
ОСНОВНЫЕ ФОРМУЛЫ • Потенциал электростатического поля
П
Рис. 14.30
(рис. 14.30). Используя теорему Остроградского-Гаусса и прин¬цип суперпозиции полей, найти напряженность Е поля в точках Oi и А. Радиус R = 10 см.
14.74*. Две бесконечные пластины толщиной d и 3d (d — 1см) расположены параллельно друг другу на расстоянии равном d. На пластинах равномерно распределены заряды с объемными плотно¬стями —рир(р = 20мкКл/м3) (рис. 14.31). 1. Используя теорему Остроградского-Гаусса и принцип суперпозиции электрических по¬лей, найти выражения для напряженности Е(х) электрического
где П — потенциальная энергия точечного заряда, помещенного в данную точку поля, при условии, что его потенциальная энергия в бесконечности принята равной нулю.
• Потенциал электрического поля, создаваемый точечным зарядом Q на расстоянии г от заряда,
Q
• Потенциал электрического поля, создаваемого металлической, несу-щей заряд Q сферой радиусом R, на расстоянии г от центра сферы:
234
Гл. 3. Электростатика
внутри сферы (г < R)
Q
на поверхности сферы (г = R)
Q
§ 15. Потенциал. Энергия системы электрических зарядов 235
где у>] и ф2 — потенциалы точек двух эквипотенциальных поверхностей;
d — расстояние между этими поверхностями вдоль электрической сило¬вой линии.
• Работа, совершаемая электрическим полем при перемещении точеч-ного заряда Q из одной точки поля, имеющей потенциал <рх, в другую, имеющую потенциал у?2,
= Q I Etdl,
А — Q(ipi - ip2), или A
вне сферы (г > R)
V
Q
Во всех приведенных для потенциала заряженной сферы формулах е есть диэлектрическая проницаемость однородного безграничного ди-электрика, окружающего сферу.
• Потенциал электрического поля, созданного системой п точечных зарядов, в данной точке в соответствии с принципом суперпозиции элек-трических полей равен алгебраической сумме потенциалов ipi, tp2, ••■ ..., ipn, создаваемых отдельными точечными зарядами Qi, Q2, ■ ■■, Qn-
ч> =
• Энергия W взаимодействия системы точечных зарядов Qi, Q2,..., Qn определяется работой, которую эта система зарядов может совершить при удалении их относительно друг друга в бесконечность, и выражается формулой
где Ei — проекция вектора напряженности Е на направление перемеше-ния; dl — перемещение.
Р случае однородного поля последняя формула принимает вид
А = QEl cos a,
где I — перемещение; а — угол между направлениями вектора Е и перемещения 1.
• Циркуляция вектора напряженности электрического поля есть вели-чина, численно равная работе по перемещению единичного точечного положительного заряда вдоль замкнутого контура. Циркуляция выра-жается интегралом по замкнутому контуру § Ei dl, где Ei — проекция вектора напряженности Е в данной точке контура на направление каса-тельной к контуру в той же точке.
В случае электростатического поля циркуляция вектора напряженно-сти равна нулю:
Ei dl = 0.
2f=1
где ipi — потенциал поля, создаваемого всеми п — 1 зарядами (за ис-ключением г-го) в точке, где расположен заряд Qi.
• Потенциал связан с напряженностью электрического поля соотно-шением
Е = —grad ip.
В случае электрического поля, обладающего сферической симметрией, эта связь выражается формулой
или в скалярной форме
а в случае однородного поля, т. е. поля, напряженность которого в каждой точке его одинакова как по модулю, так и по направлению,
^ _ VI - Ч>2
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Пример 1. Положительные заряды Q\ = ЗмкКл и Q2 = 0,02мкКл находятся в вакууме на расстоянии т\ = 1,5 м друг от друга. Определить работу А', которую надо совершить, чтобы сблизить заряды до расстоя¬ния т2 = 1 м.
Решение. Положим, что первый заряд Q\ остается неподвижным, а второй Qi под действием внешних сил перемещается в поле, созванном зарядом Qi, приближаясь к нему с расстояния п = 1,5м до т2 = 1м.
Работа А' внешней силы по перемещению заряда Q из одной точки поля с потенциалом y>i в другую, потенциал которой <р2, равна по модулю и противоположна по знаку работе А сил поля по перемещению заряда между теми же точками:
А' = -А.
Работа А сил поля по перемещению заряда А = Q(ipi — ip2). Тогда работа А' внешних сил может быть записана в виде
(1)
А' = -Q(vi - V2) = Qivi ~ Vi)-
236
Гл. 3. Электростатика
Потенциалы точек начала и конца пути выразятся формулами
Ч>2 =
Подставляя выражения ^и^в формулу (1) и учитьшая, что для данного случая переносимый заряд Q = Q2, получим
л, _
(2)
Q1Q2
г2 п) '
Если учесть, что 1/(47г£о) = 9 ■ 109 м/Ф, то после подстановки зна¬чений величин в формулу (2) и вычисления найдем
А' = 180 мкДж.
Пример 2. Найти работу А поля по перемещению заряда Q = — ЮнКл из точки 1 в точку 2 (рис. 15.1), находящиеся между двумя раз-ноименно заряженными с поверхностной плотностью a = 0,4мкКл/м2 бесконечными параллельными плоскостями, расстояние I между кото¬рыми равно Зсм.
Решение. Возможны два способа решения задачи.
1-й способ. Работу сил поля по перемещению заряда Q из точки 1 поля с потенциалом y>i в точку 2 поля с потенциалом у?2 найдем по фор¬муле
(3)
А = Q(v>i - V*)-
+а
Для определения потенциалов в точках 1 и 2 проведем через эти точки эквипотенциальные поверхности I и П. Эти поверхности будут плоскостями, так как поле между двумя равномерно заряженными бес-конечными параллельными плоскостями од¬нородно. Для такого поля справедливо соот¬ношение
1
Vi - Ч>1 - El, (4)
II *> >
-a
где Е — напряженность поля; I — рассто¬яние между эквипотенциальными поверхно¬стями.
Рис. 15.1
Напряженность поля между параллель¬ными бесконечными разноименно заряжен¬ными плоскостями Е = а/во. Подставив это выражение Е в формулу (4) и затем выражение y>i — ip2 в формулу (3), получим
А = Q±l.