
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки я тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела вокруг неподвижной оси
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела 71
- •§ 3. Динамика вращательного движения твердого тела 73
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§4. Силы в механике
- •§ 4. Силы в механике
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 8. Молекулярное строение вещества
- •Глава 2
- •§ 8. Молекулярное строение вещества. Законы идеальных газов
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 9. Молекулярно-киыетическая теория газов
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10 Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§9, Основные формулы).
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •Глава 3
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля. Электрическое смешение
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 15. Потенциал. Энергия системы электрических зарядов 233
- •§ 15. Потенциал. Энергия системы электрических зарядов. Работа по перемещению заряда в поле
- •§ 15. Потенциал. Энергия системы электрических зарядов 235
- •§ 15. Потенциал. Энергия системы электрических зарядов 237
- •§ 15. Потенциал. Энергия системы электрических зарядов 239
- •§ 15. Потенциал. Энергия системы электрических зарядов 241
- •§ 15. Потенциал. Энергия системы электрических зарядов 243 Выполнив вычисления по полученной формуле, найдем v0 - 2,35 • 106 м/с.
- •§ 15. Потенциал. Энергия системы электрических зарядов 245
- •§ 15. Потенциал. Энергия системы электрических зарядов 247
- •§ 15. Потенциал. Энергия системы электрических зарядов 249
- •§ 15. Потенциал. Энергия системы электрических зарядов 251
- •§ 15. Потенцией!. Энергия системы электрических зарядов 253
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков 259
- •§16. Электрический диполь. Свойства диэлектриков 261
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков 265
- •§ 16. Электрический диполь. Свойства диэлектриков Электронная и атомная поляризации
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 18. Энергия заряженного проводника
- •§ 18. Энергия заряженного проводника. Энергия электрического поля
- •§ 18. Энергия заряженного проводники.
- •§ 18. Энергия заряженного проводника
- •§ 18. Энергия заряженного проводника
- •Глава 4
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •Глава 5
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное ладе постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 22. Сила, действующая на проводник с током в магнитном поле
- •§ 22. Сила, действующая на проводник с током в магнитном поле 321
- •§22. Сила, действующая на проводник с током в магнитном поле 325
- •§ 22. Сила, действующая на проводник с током в магнитном поле 327
- •§22. Сила, действующая на проводник с током в магнитном поле 329
- •§22. Сила, действующая на проводник с током в магнитном поле 331
- •§ 22. Сила,, действующая на проводник с током в магнитном поле 333
- •§ 23. Сила, действующая назаряд, движущийся в магнитном поле 335
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле
- •§23. Сила, действующая назаряд, движущийся в магнитном поле 337
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле 339
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле 341
- •§23. Сила, действующая на заряд, движущийся в магнитном поле 343
- •§24. Закон полного тока. Магнитный поток. Магнитные цепи 345
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 347
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 349
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 351
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Работа по перемещению проводника
- •§ 25. Электромагнитная индукция. Индуктивность
- •§25. Электромагнитная индукция. Индуктивность 357
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойсхва вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 28. Геометрическая оптика
- •Глава 6
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 29. Фотометрия
- •§ 29. Фотометрия
- •§ 29. Фотометрия
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§31. Дифракция света
- •§ 31. Дифракция света
- •§31. Дифракция света
- •§ 31. Дифракция света
- •§ 31. Дифракция света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 34. Законы теплового излучения
- •Глава 7
- •§ 34. Законы теплового излучения
- •§ 34. Законы теплового излучения
- •§ 35. Фотоэлектрический эффект
- •§ 35. Фотоэлектрический эффект
- •§ 36. Давление света. Фотоны
- •§ 36. Давление света. Фотоны
- •§ 36. Давление света. Фотоны
- •§ 37. Эффект Комптона
- •§ 37. Эффект Комптона
- •§ 37. Эффект Комптона
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 39. Рентгеновское излучение
- •§ 39. Рентгеновское излучение
- •§ 39. Рентгеновское излучение
- •Глава 8
- •§ 40. Строение атомных ядер
- •§ 40. Строение атомных ядер
- •§ 40. Строение атомных ядер
- •§41. Радиоактивность
- •§ 41. Радиоактивность
- •§41. Радиоактивность
- •§ 42. Элементы дозиметрии ионизирующих излучении
- •§ 42. Элементы дозиметрии ионизирующих излучений
- •§ 42. Элементы дозиметрии ионизирующих излучений 465
- •§ 42. Элементы дозиметрии ионизирующих излучений 467
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§44. Ядерные реакции
- •§ 44. Ядерные реакции
- •§44. Ядерные реакции
- •§ 44. Ядерные реакции
- •§ 45. Волновые свойства микрочастиц
- •Глава 9
- •§ 45. Волновые свойства микрочастиц
- •§ 45. Волновые свойства микрочастиц
- •§ 45. Волновые свойства микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 49. Элементы кристаллографии
- •Глава 10
- •§ 49. Элементы кристаллографии
- •§ 49. Элементы кристаллографии
- •§ 49. Элементы кристаллографии
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§50. Тепловые свойства
- •§51. Электрические и магнитные свойства твердых тел 547
- •§ 51. Электрические и магнитные свойства твердых тел
- •§51. Электрические и магнитные свойства твердых тел 549
- •§ 51. Электрические и магнитные свойства твердых тел 551
- •§51. Электрические и магнитные свойства твердых тел 553
- •§51. Электрические и магнитные свойства твердых тел 555
- •§ 51. Электрические и магнитные свойства твердых тел 557
§ 14. Напряженность электрического поля
217
Поле, создаваемое бесконечной заряженной линией, неоднородно. Его напряженность зависит от расстояния и определяется по формуле
Е2 = 7Г— ■ (6)
2тгеог v
Согласно принципу суперпозиции электрических полей, напряжен-ность поля в точке, где находится заряд Q, равна векторной сумме на-
Рис. 14.5
г- Так как векторы Ei и
пряженностей Ei и Е2 (рис. 14.5): Е = Ех + Ег взаимно перпендикулярны, то
Подставляя выражения Е\ и Е2 по формулам (5) и (6) в это равен¬ство, получим
. или
42 тг2г2
Теперь найдем силу F, действующую на заряд, подставив выражение Е в формулу (4):
(7)
о* +
2е0
Подставив значения величин тг, г, а и т в это выражение и вычислив, получим
о = 51°34'.
Пример 5. Точечный заряд Q = 25нКл находится в поле, создан¬ном прямым бесконечным цилиндром радиусом R — 1 см, равномерно заряженным с поверхностной плотностью a — 2 • 103нКл/м2. Опре¬делить силу, действующую на заряд, помещенный от оси цилиндра на расстоянии г — 10 см.
Решение. Сила, действующая на заряд Q, находящийся в поле,
(8)
= QE,
где Е — напряженность поля в точке, в которой находится заряд Q.
Как известно, напряженность поля бесконечно длинного равномерно заряженного цилиндра
тр
2тгеог'
где т — линейная плотность заряда.
Выразим линейную плотность т через поверхностную плотность ст. Для этого выделим элемент-цилиндра длиной I и выразим находящийся на нем заряд Qi двумя способами:
Qx = aS = a ■ 2тгШ и ft= т1.
Приравняв правые части этих равенств, получим т1 — 2irRla. После сокращения на I найдем т = 2irRa. С учетом этого формула (9) примет вид Е = Ra/(eor). Подставив это выражение в формулу (8), найдем искомую силу:
F =
(10)
QoR
Так как Rur входят в формулу в виде отношения, то они могут быть выражены в любых, но только одинаковых единицах. Выполнив вычисления по формуле (10), найдем
Подставив значения величин Q, ео, сг, т, тг и г в формулу (7) и сделав вычисления, найдем
F = 289 мкН.
Направление силы F, действующей на положительный заряд Q, со-впадает с направлением вектора напряженности Е поля. Направление же вектора Е задается углом а к заряженной плоскости. Из рис. 14.5 следует, что
Ei а г а\
tgo = — = тгг—, откуда о = arctg I тгг— ).
til Т \ Т/
Направление силы F совпадает с направлением вектора напряжен-ности Е, а последний в силу симметрии (цилиндр бесконечно длинный) направлен перпендикулярно оси цилиндра.
Пример 6. Электрическое поле создано тонкой бесконечно длинной нитью, равномерно заряженной с линейной плотностью т = ЗОнКл/м. На расстоянии о = 20 см от нити находится плоская круглая площадка радиусом г — 1 см. Определить поток вектора напряженности через эту
14 Зак. 237
218
Гл.З. Электростатика
§ 14. Напряженность электрического поля
219
площадку, если плоскость ее составляет угол /3 == 30° с линией напря-женности, проходящей через середину площадки.
Решение. Поле, создаваемое бесконечной равномерно заряженной нитью, является неоднородным. Поток вектора напряженности в этом случае выражается интегралом
(И)
где Еп — проекция вектора Е на нормаль п к поверхности площадки dS. Интегрирование выполняется по всей поверхности площадки, которую
пронизывают линии напряженности. Проекция Еп вектора напряженности
равна, как видно из рис. 14.6,
Еп — Е cos a,
где а — угол между направлением Е век-тора и нормалью п.
Е
С учетом этого формула (11) примет вид
= / EcosadS.
Рис. 14.6 ^
Так как размеры поверхности площадки
малы по сравнению с расстоянием до ни-ти (г <?С а), то электрическое поле в пределах площадки можно счи¬тать практически однородным. Следовательно, вектор напряженности Е очень мало меняется по модулю и направлению в пределах площадки, что позволяет заменить под знаком интеграла значения Е и cos a их средними значениями (Е) и (cos а) и вынести их за знак интеграла:
ФЕ = [(E){cosa)dS = (E){cosa) f dS.
Подставив в последнюю формулу данные и произведя вычисления, найдем
ФЕ = 0,424 В • м.
Пример 7. Две концентрические проводящие сферы радиусами Ri = 6см и Л2 = 10см несут соответственно заряды Qx = 1нКл и Qi~— 0,5 нКл. Найти напряженность Е поля в точках, отстоящих от центра сфер на расстояниях т-^—Ъ см, г2 = 9 см и гз = 15 см. Построить график Е(т).
Решение. Заметим, что точки, в которых требуется найти на¬пряженности электрического поля, лежат в трех областях (рис. 14.7): область I (ri < Ri), область II (Rx < r2 < < R2), область III (r3 > Я2).
in
/
1. Для определения напряженности Е\ в области I проведем сферическую поверх-ность Si радиусом Г\, и воспользуемся те-оремой Остроградского-Гаусса. Так как внутри области I зарядов нет, то согласно указанной теореме получим равенство
(13)
EndS =
Рис. 14.7
где Еп — нормальная составляющая на-пряженности электрического поля.
Из соображении симметрии нормаль¬ная составляющая Еп должна быть равна
самой напряженности и постоянна для всех точек сферы, т.е. Еп — — Е\ = const. Поэтому ее можно вынести за знак интеграла. Равенство (13) примет вид
j dS = 0.
Si Так как плошадь сферы не равна нулю, то
Выполняя интегрирование и заменяя (Е) и (cos о) их приближен¬ными значениями ЕА и coso^, вычисленными для средней точки пло¬щадки, получим
(12)
ФЕ = ЕА cosaAS —
Напряженность ЕА вычисляется по формуле ЕА = г/(2тге0о). Из рис. 14.6 следует cosa^ = COS(TT/2 — /3) = sin/3.
тг 2епа
ТГГ2Т
sin/3.
С учетом выражения ЕА и cosa^ равенство (12) примет вид
sin/З, или ФЕ =
т.е. напряженность поля во всех точках, удовлетворяющих условию ri < Ri, будет равна нулю.
2. В области II сферическую поверхность проведем радиусом г2. Так как внутри этой поверхности находится заряд Qi, то для нее, согласно теореме Остроградского-Гаусса, можно записать равенство
/
(14)
ео
Так как Еп — Е% = const, то из условий симметрии следует
или
EjdS=9±,
J Со
14*
220
Гл. 3. Электростатика