
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки я тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела вокруг неподвижной оси
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела 71
- •§ 3. Динамика вращательного движения твердого тела 73
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§4. Силы в механике
- •§ 4. Силы в механике
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 8. Молекулярное строение вещества
- •Глава 2
- •§ 8. Молекулярное строение вещества. Законы идеальных газов
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 9. Молекулярно-киыетическая теория газов
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10 Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§9, Основные формулы).
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •Глава 3
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля. Электрическое смешение
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 15. Потенциал. Энергия системы электрических зарядов 233
- •§ 15. Потенциал. Энергия системы электрических зарядов. Работа по перемещению заряда в поле
- •§ 15. Потенциал. Энергия системы электрических зарядов 235
- •§ 15. Потенциал. Энергия системы электрических зарядов 237
- •§ 15. Потенциал. Энергия системы электрических зарядов 239
- •§ 15. Потенциал. Энергия системы электрических зарядов 241
- •§ 15. Потенциал. Энергия системы электрических зарядов 243 Выполнив вычисления по полученной формуле, найдем v0 - 2,35 • 106 м/с.
- •§ 15. Потенциал. Энергия системы электрических зарядов 245
- •§ 15. Потенциал. Энергия системы электрических зарядов 247
- •§ 15. Потенциал. Энергия системы электрических зарядов 249
- •§ 15. Потенциал. Энергия системы электрических зарядов 251
- •§ 15. Потенцией!. Энергия системы электрических зарядов 253
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков 259
- •§16. Электрический диполь. Свойства диэлектриков 261
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков 265
- •§ 16. Электрический диполь. Свойства диэлектриков Электронная и атомная поляризации
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 18. Энергия заряженного проводника
- •§ 18. Энергия заряженного проводника. Энергия электрического поля
- •§ 18. Энергия заряженного проводники.
- •§ 18. Энергия заряженного проводника
- •§ 18. Энергия заряженного проводника
- •Глава 4
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •Глава 5
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное ладе постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 22. Сила, действующая на проводник с током в магнитном поле
- •§ 22. Сила, действующая на проводник с током в магнитном поле 321
- •§22. Сила, действующая на проводник с током в магнитном поле 325
- •§ 22. Сила, действующая на проводник с током в магнитном поле 327
- •§22. Сила, действующая на проводник с током в магнитном поле 329
- •§22. Сила, действующая на проводник с током в магнитном поле 331
- •§ 22. Сила,, действующая на проводник с током в магнитном поле 333
- •§ 23. Сила, действующая назаряд, движущийся в магнитном поле 335
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле
- •§23. Сила, действующая назаряд, движущийся в магнитном поле 337
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле 339
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле 341
- •§23. Сила, действующая на заряд, движущийся в магнитном поле 343
- •§24. Закон полного тока. Магнитный поток. Магнитные цепи 345
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 347
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 349
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 351
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Работа по перемещению проводника
- •§ 25. Электромагнитная индукция. Индуктивность
- •§25. Электромагнитная индукция. Индуктивность 357
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойсхва вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 28. Геометрическая оптика
- •Глава 6
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 29. Фотометрия
- •§ 29. Фотометрия
- •§ 29. Фотометрия
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§31. Дифракция света
- •§ 31. Дифракция света
- •§31. Дифракция света
- •§ 31. Дифракция света
- •§ 31. Дифракция света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 34. Законы теплового излучения
- •Глава 7
- •§ 34. Законы теплового излучения
- •§ 34. Законы теплового излучения
- •§ 35. Фотоэлектрический эффект
- •§ 35. Фотоэлектрический эффект
- •§ 36. Давление света. Фотоны
- •§ 36. Давление света. Фотоны
- •§ 36. Давление света. Фотоны
- •§ 37. Эффект Комптона
- •§ 37. Эффект Комптона
- •§ 37. Эффект Комптона
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 39. Рентгеновское излучение
- •§ 39. Рентгеновское излучение
- •§ 39. Рентгеновское излучение
- •Глава 8
- •§ 40. Строение атомных ядер
- •§ 40. Строение атомных ядер
- •§ 40. Строение атомных ядер
- •§41. Радиоактивность
- •§ 41. Радиоактивность
- •§41. Радиоактивность
- •§ 42. Элементы дозиметрии ионизирующих излучении
- •§ 42. Элементы дозиметрии ионизирующих излучений
- •§ 42. Элементы дозиметрии ионизирующих излучений 465
- •§ 42. Элементы дозиметрии ионизирующих излучений 467
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§44. Ядерные реакции
- •§ 44. Ядерные реакции
- •§44. Ядерные реакции
- •§ 44. Ядерные реакции
- •§ 45. Волновые свойства микрочастиц
- •Глава 9
- •§ 45. Волновые свойства микрочастиц
- •§ 45. Волновые свойства микрочастиц
- •§ 45. Волновые свойства микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 49. Элементы кристаллографии
- •Глава 10
- •§ 49. Элементы кристаллографии
- •§ 49. Элементы кристаллографии
- •§ 49. Элементы кристаллографии
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§50. Тепловые свойства
- •§51. Электрические и магнитные свойства твердых тел 547
- •§ 51. Электрические и магнитные свойства твердых тел
- •§51. Электрические и магнитные свойства твердых тел 549
- •§ 51. Электрические и магнитные свойства твердых тел 551
- •§51. Электрические и магнитные свойства твердых тел 553
- •§51. Электрические и магнитные свойства твердых тел 555
- •§ 51. Электрические и магнитные свойства твердых тел 557
§ 4. Силы в механике
77
• Напряженность гравитационного поля
_ F
где F — сила тяготения, действующая на материальную точку массы т, помещенную в некоторую точку поля.
• Напряженность гравитационного поля, создаваемого планетой, мас¬
су М которой можно считать распределенной сферически-симметрично,
где г — расстояние от центра планеты до интересующей нас точки поля, находящейся вне планеты.
• Ускорение свободного падения на высоте h над поверхностью Земли
9 gh (I + h/R)2'
где R — радиус Земли; д — ускорение свободного падения на поверхно¬сти Земли. Если h <g. R, то
2Л
• Потенциальная энергия гравитационного взаимодействия двух ма-териальных точек массами mi и т2 (шаров с массой, распределенной сферически-симметрично), находящихся на расстоянии г друг от друга,
п = -
(Потенциальную энергию бесконечно удаленных друг от друга матери-альных точек принято считать равной нулю.) • Потенциал гравитационного поля
П
где П — потенциальная энергия материальной точки массой т, поме-щенной в данную точку поля.
• Потенциал гравитационного поля, создаваемого планетой, массу М
которой можно считать распределенной сферически-симметрично,
М ¥>=-<?-,
где 1 расстояние от центра планеты до интересующей нас точки поля,
находящейся вне планеты.
• Законы Кеплера:
1. Планеты движутся по эллипсам, в одном из фокусов которых на¬
ходится Солнце.
2. Радиус-вектор планеты, проведенный из Солнца, в равные времена
описывает одинаковые площади.
3. Квадраты периодов обращения любых двух планет относятся как кубы больших полуосей их орбит:
Законы Кеплера справедливы также для движения спутников вокруг планеты.
• Относительная деформация при продольном растяжении или сжа¬тии тела
х
£ = Т>
I i
где е — относительное удлинение (сжатие); х — абсолютное удлинение (рис. 4.1); I — начальная длина тела.
-к Л \ \ \
Рис. 4.1 Рис. 4.2
Относительная деформация при сдвиге определяется из формулы
As
где tg 7 — относительный сдвиг; As — абсолютный сдвиг параллельных слоев тела относительно друг друга (рис. 4.2); h — расстояние между слоями; 7 — угол сдвига. (Для малых углов tg7 = 7 = Ав/Л.) • Напряжение нормальное
-¥
где Fynp — упругая сила, перпендикулярная поперечному сечению тела; S — площадь этого сечения. Напряжение тангенциальное
где Fynp — упругая сила, действующая вдоль слоя тела; S — площадь этого слоя.
78
Гл. 1. Физические основы механики
§ 4. Силы в механике
79
• Закон Гука для продольного растяжения или сжатия
Fynp = -kx, или a = еЕ,
где к — коэффициент упругости (в случае пружины — жесткость); Е — модуль Юнга.
Закон Гука для сдвига
Fh As = —, или т = G7,
где G — модуль поперечной упругости (модуль сдвига).
• Момент, закручивающий на угол <р однородный круглый стержень,
М = С<р,
где С — постоянная кручения.
кх2
• Работа, совершаемая при деформации тела,
А =
• Потенциальная энергия растянутого или сжатого стержня
П = ~, или П=^У, или П=^-У, где V — объем тела.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Пример 1. Определить вторую космическую скорость УЦ ракеты, запущенной с поверхности Земли.
Примечание. Второй космической (или параболической) скоростью tin называется минимальная скорость, которую нужно сообщить телу, чтобы оно удалилось с поверхности Земли в бесконечность (при этом сопротивление воздуха в расчет не принимается и предполагается, что на тело действует только поле тяготения Земли).
Решение. При удалении тела массой m в бесконечность его по-тенциальная энергия возрастает за счет убыли кинетической энергии и в бесконечности достигает максимального значения, равного нулю. Со-гласно определению второй космической скорости, кинетическая энер¬гия в бесконечности также равна нулю. Таким образом, в бесконечности Too = 0 и Пто = 0. В соответствии с законом сохранения энергии в механике
или
Т + П = Тто + Пс
-<-"■
где М — масса Земли. Отсюда находим УЦ = yj2GM/R. Преобразуем эту формулу, умножив и разделив подкоренное выражение на R: УЦ = = y/(2GM/R2)R.
Так как GM/R2 — д (где д — ускорение свободного падения у по-верхности Земли), то
/
Подставив в эту формулу значения д и R и произведя вычисления, по¬лучим
г>н = 11,2 км/с.
Пример 2. Ракета установлена на поверхности Земли для запуска в вертикальном направлении. При какой минимальной скорости vi, сооб-щенной ракете при запуске, она удалится от поверхности на расстояние, равное радиусу Земли (R — 6,37 • 106 м)? Силами, кроме силы гравита-ционного взаимодействия ракеты и Земли, пренебречь.
Решение. Чтобы определить минимальную скорость v\ ракеты, надо найти ее минимальную кинетическую энергию Т\. Для этого вос-пользуемся законом сохранения механической энергии. Этот закон вы-полняется для замкнутой системы тел, в которой действуют только кон-сервативные силы.
Систему ракета-Земля можно считать замкнутой. Единственная си¬ла, действующая на систему, — сила гравитационного взаимодействия, являющаяся консервативной.
В качестве системы отсчета выберем инерциальную систему отсчета, так как только в такой системе справедливы законы динамики и, в част-ности, законы сохранения. Известно, что система отсчета, связанная с центром масс замкнутой системы тел, является инерциальной. В рассма-триваемом случае пентр масс системы ракета-Земля будет практически совпадать с центром Земли, так как масса М Земли много больше массы m ракеты. Следовательно, систему отсчета, связанную с центром Земли, можно считать практически инерциальной. Согласно закону сохранения механической энергии, запишем
(1)
П1=Г2+П2,
где Ti и III — кинетическая и потенциальная энергия системы ракета-Земля в начальном состоянии (на поверхности Земли); Тг и Пг — те же величины в конечном состоянии (на расстоянии, равном радиусу Земли).
В выбранной системе отсчета кинетическая энергия Земли равна нулю. Поэтому Т\ есть просто начальная кинетическая энергия ра¬кеты: Т\ = mv2/2. Потенциальная энергия системы в начальном со¬стоянии11) III = —GmM/R. По мере удаления ракеты от поверхности Земли ее потенциальная энергия будет возрастать, а кинетическая — убывать. В конечном состоянии кинетическая энергия Т2 станет равной нулю, а потенциальная энергия Пг достигнет максимального значения: П2 = -GmM/(2R).
Подставив значения 7\, Щ, Г2 и Пг в выражение (1), получим
1
-
—,
11) Потенциальная энергия гравитационного взаимодействия тел, бесконечно удаленных друг от друга, принимается равной нулю.
80
Гл. 1. Физические основы механики