
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки я тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела вокруг неподвижной оси
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела 71
- •§ 3. Динамика вращательного движения твердого тела 73
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§4. Силы в механике
- •§ 4. Силы в механике
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 8. Молекулярное строение вещества
- •Глава 2
- •§ 8. Молекулярное строение вещества. Законы идеальных газов
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 9. Молекулярно-киыетическая теория газов
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10 Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§9, Основные формулы).
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •Глава 3
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля. Электрическое смешение
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 15. Потенциал. Энергия системы электрических зарядов 233
- •§ 15. Потенциал. Энергия системы электрических зарядов. Работа по перемещению заряда в поле
- •§ 15. Потенциал. Энергия системы электрических зарядов 235
- •§ 15. Потенциал. Энергия системы электрических зарядов 237
- •§ 15. Потенциал. Энергия системы электрических зарядов 239
- •§ 15. Потенциал. Энергия системы электрических зарядов 241
- •§ 15. Потенциал. Энергия системы электрических зарядов 243 Выполнив вычисления по полученной формуле, найдем v0 - 2,35 • 106 м/с.
- •§ 15. Потенциал. Энергия системы электрических зарядов 245
- •§ 15. Потенциал. Энергия системы электрических зарядов 247
- •§ 15. Потенциал. Энергия системы электрических зарядов 249
- •§ 15. Потенциал. Энергия системы электрических зарядов 251
- •§ 15. Потенцией!. Энергия системы электрических зарядов 253
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков 259
- •§16. Электрический диполь. Свойства диэлектриков 261
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков 265
- •§ 16. Электрический диполь. Свойства диэлектриков Электронная и атомная поляризации
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 18. Энергия заряженного проводника
- •§ 18. Энергия заряженного проводника. Энергия электрического поля
- •§ 18. Энергия заряженного проводники.
- •§ 18. Энергия заряженного проводника
- •§ 18. Энергия заряженного проводника
- •Глава 4
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •Глава 5
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное ладе постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 22. Сила, действующая на проводник с током в магнитном поле
- •§ 22. Сила, действующая на проводник с током в магнитном поле 321
- •§22. Сила, действующая на проводник с током в магнитном поле 325
- •§ 22. Сила, действующая на проводник с током в магнитном поле 327
- •§22. Сила, действующая на проводник с током в магнитном поле 329
- •§22. Сила, действующая на проводник с током в магнитном поле 331
- •§ 22. Сила,, действующая на проводник с током в магнитном поле 333
- •§ 23. Сила, действующая назаряд, движущийся в магнитном поле 335
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле
- •§23. Сила, действующая назаряд, движущийся в магнитном поле 337
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле 339
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле 341
- •§23. Сила, действующая на заряд, движущийся в магнитном поле 343
- •§24. Закон полного тока. Магнитный поток. Магнитные цепи 345
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 347
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 349
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 351
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Работа по перемещению проводника
- •§ 25. Электромагнитная индукция. Индуктивность
- •§25. Электромагнитная индукция. Индуктивность 357
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойсхва вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 28. Геометрическая оптика
- •Глава 6
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 29. Фотометрия
- •§ 29. Фотометрия
- •§ 29. Фотометрия
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§31. Дифракция света
- •§ 31. Дифракция света
- •§31. Дифракция света
- •§ 31. Дифракция света
- •§ 31. Дифракция света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 34. Законы теплового излучения
- •Глава 7
- •§ 34. Законы теплового излучения
- •§ 34. Законы теплового излучения
- •§ 35. Фотоэлектрический эффект
- •§ 35. Фотоэлектрический эффект
- •§ 36. Давление света. Фотоны
- •§ 36. Давление света. Фотоны
- •§ 36. Давление света. Фотоны
- •§ 37. Эффект Комптона
- •§ 37. Эффект Комптона
- •§ 37. Эффект Комптона
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 39. Рентгеновское излучение
- •§ 39. Рентгеновское излучение
- •§ 39. Рентгеновское излучение
- •Глава 8
- •§ 40. Строение атомных ядер
- •§ 40. Строение атомных ядер
- •§ 40. Строение атомных ядер
- •§41. Радиоактивность
- •§ 41. Радиоактивность
- •§41. Радиоактивность
- •§ 42. Элементы дозиметрии ионизирующих излучении
- •§ 42. Элементы дозиметрии ионизирующих излучений
- •§ 42. Элементы дозиметрии ионизирующих излучений 465
- •§ 42. Элементы дозиметрии ионизирующих излучений 467
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§44. Ядерные реакции
- •§ 44. Ядерные реакции
- •§44. Ядерные реакции
- •§ 44. Ядерные реакции
- •§ 45. Волновые свойства микрочастиц
- •Глава 9
- •§ 45. Волновые свойства микрочастиц
- •§ 45. Волновые свойства микрочастиц
- •§ 45. Волновые свойства микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 49. Элементы кристаллографии
- •Глава 10
- •§ 49. Элементы кристаллографии
- •§ 49. Элементы кристаллографии
- •§ 49. Элементы кристаллографии
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§50. Тепловые свойства
- •§51. Электрические и магнитные свойства твердых тел 547
- •§ 51. Электрические и магнитные свойства твердых тел
- •§51. Электрические и магнитные свойства твердых тел 549
- •§ 51. Электрические и магнитные свойства твердых тел 551
- •§51. Электрические и магнитные свойства твердых тел 553
- •§51. Электрические и магнитные свойства твердых тел 555
- •§ 51. Электрические и магнитные свойства твердых тел 557
§ 49. Элементы кристаллографии
529
Подставив в это выражение найденное ранее значение а, получим
d = 393 пм.
Пример 3. Написать индексы направления прямой, проходящей через узлы [[100]] и [[001]] кубической примитивной решетки.
Решение. Эту задачу можно решить двумя способами.
1-й способ. Изобразим кубическую примитивную ячейку, отметим на ней узлы с индексами [[100]] и [[001]] и проведем через эти узлы прямую (рис. 49.5а).
Заданная прямая не проходит через начало координат. Но этого можно достигнуть, перенеся начало координат в один из узлов, через которые проходит прямая.
ntl
Если перенести начало координат в узел [[100]] (рис. 49.56), то узел, лежащий на той же прямой и ближайший к выбранному началу коорди-
[[001]
[[101]]
[[100R
У [[Ю1]]1
У [[000]
Рис. 49.5
нат, будет иметь индексы [[101]], а искомое направление в этом случае определится индексами [101].
Если же начало координат перенести в узел [[001]] (рис. 49.5в), то соответственно индексы искомого направления будут [101]. Итак, индек¬сы искомого направления в кристалле [101] или [101].
2-й способ. Не всегда бывает легко определить, как изменятся ин¬дексы узлов при переносе начала координат. Поэтому рассмотрим ана-литический метод решения.
Напишем в общем виде уравнение прямой, проходящей через две точки в пространстве, с индексами узлов [[minipi]] и
х — mi У — ^ц z — Pi
Пример 4. Написать индексы Миллера для плоскости, содержащей узлы с индексами [[200]], [[010]] и [[001]]. Решетка кубическая, прими-тивная.
Решение. Возможны два способа решения задачи.
1-й способ применим в тех случаях, когда узлы, принадлежащие плоскости, лежат одновременно и на осях координат (т.е. известны отрезки, отсекаемые плоскостью на осях координат).
В данном случае узлы, принадлежащие плоскости, лежат на осях ко-ординат, и отрезки (в единицах постоянной решетки), отсекаемые на осях координат этой плоскостью, соответ¬ственно будут 2,1,1 (рис. 49.6).
В соответствии с общим правилом нахо-ждения индексов Миллера напишем обрат-
1 1 1 ные значения полученных чисел -; -; - и
[[200]
Рис. 49.6
приведем их к наименьшему целому крат-ному этих чисел. Для этого умножим числа на два. Полученная совокупность значений, заключенная в круглые скобки, и есть иско-мые индексы Миллера (1, 2, 2).
2-й способ (аналитический) особенно удобен тогда, когда известные узлы не лежат на осях координат. Этот способ является общим и при¬меним во всех случаях.
Известно, что индексы Миллера равны наименьшим целочисленным коэффициентам при переменных в уравнении плоскости. Поэтому реше¬ние задачи по определению индексов Миллера сводится, по существу, к отысканию уравнения плоскости.
Уравнение плоскости, проходящей через три точки с координатами ]], [[m2n2p2]], [Нз"зРз]]| дается определителем третьего порядка
= 0.
х - mi у - щ z-pi m2 — mi n2 - п\ р2 — Pi m3 - mi n3 - ni рз - Pi
В нашем случае: mi = 2, щ = 0, p\ =0; m2 = 0, n? — 1, Рг = 0; шз — 0, пз = 0, рз = 1. Подставляя значения индексов узлов в опреде¬литель, получим
m2 -mi П2-П1 ft-Pi
Величины, стоящие в знаменателе, пропорциональны направляю¬щим косинусам прямой. Но так как эти величины целочисленны, то они и будут являться индексами направления.
Подставив в знаменатель выражения (3) значения индексов узлов mi = 1, щ = 0, pi = 0 и т2 = 0, п2 = 0, рг = 1, получим:
т2 — mi = 0 — 1 = —1; п2 - щ = 0 - 0 = 0; Рг ~Р\ = 1-0= 1.
Таким образом, искомые индексы направления [101].
х-2 у z -2 1 0 -2 0 1
= 0, или
= 0.
х-2 j/-0 z-0 0-2 1-0 0-0 0-2 0-0'1-0
1 0 -2 0 -2 1
0 1 -у -2 1 + z -2 0
Разложим этот определитель по элементам первой строки:
= 0.
(х-2) Раскрывая определитель второго порядка, получим
35 Зак. 237
530
Гл. 10. Физика твердого тела