
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 1. Кинематика
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки я тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 2. Динамика материальной точки и тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела вокруг неподвижной оси
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела
- •§ 3. Динамика вращательного движения твердого тела 71
- •§ 3. Динамика вращательного движения твердого тела 73
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§ 4. Силы в механике
- •§4. Силы в механике
- •§ 4. Силы в механике
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 5. Релятивистская механика
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§6. Механические колебания
- •§ 6. Механические колебания
- •§ 6. Механические колебания
- •§7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 7. Волны в упругой среде. Акустика
- •§ 8. Молекулярное строение вещества
- •Глава 2
- •§ 8. Молекулярное строение вещества. Законы идеальных газов
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 8. Молекулярное строение вещества
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 9. Молекулярно-киыетическая теория газов
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 9. Молекулярно-кинетическая теория газов
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10 Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 10. Элементы статистической физики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§9, Основные формулы).
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 11. Физические основы термодинамики
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§12. Реальные газы. Жидкости
- •§ 12. Реальные газы. Жидкости
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •Глава 3
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 13. Закон Кулона. Взаимодействие заряженных тел
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля. Электрическое смешение
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 14. Напряженность электрического поля
- •§ 15. Потенциал. Энергия системы электрических зарядов 233
- •§ 15. Потенциал. Энергия системы электрических зарядов. Работа по перемещению заряда в поле
- •§ 15. Потенциал. Энергия системы электрических зарядов 235
- •§ 15. Потенциал. Энергия системы электрических зарядов 237
- •§ 15. Потенциал. Энергия системы электрических зарядов 239
- •§ 15. Потенциал. Энергия системы электрических зарядов 241
- •§ 15. Потенциал. Энергия системы электрических зарядов 243 Выполнив вычисления по полученной формуле, найдем v0 - 2,35 • 106 м/с.
- •§ 15. Потенциал. Энергия системы электрических зарядов 245
- •§ 15. Потенциал. Энергия системы электрических зарядов 247
- •§ 15. Потенциал. Энергия системы электрических зарядов 249
- •§ 15. Потенциал. Энергия системы электрических зарядов 251
- •§ 15. Потенцией!. Энергия системы электрических зарядов 253
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков 259
- •§16. Электрический диполь. Свойства диэлектриков 261
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 16. Электрический диполь. Свойства диэлектриков 265
- •§ 16. Электрический диполь. Свойства диэлектриков Электронная и атомная поляризации
- •§ 16. Электрический диполь. Свойства диэлектриков
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 17. Электрическая емкость. Конденсаторы
- •§ 18. Энергия заряженного проводника
- •§ 18. Энергия заряженного проводника. Энергия электрического поля
- •§ 18. Энергия заряженного проводники.
- •§ 18. Энергия заряженного проводника
- •§ 18. Энергия заряженного проводника
- •Глава 4
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 19. Основные законы постоянного тока
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •§ 20. Ток в металлах, жидкостях и газах
- •Глава 5
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное ладе постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 21. Магнитное поле постоянного тока
- •§ 22. Сила, действующая на проводник с током в магнитном поле
- •§ 22. Сила, действующая на проводник с током в магнитном поле 321
- •§22. Сила, действующая на проводник с током в магнитном поле 325
- •§ 22. Сила, действующая на проводник с током в магнитном поле 327
- •§22. Сила, действующая на проводник с током в магнитном поле 329
- •§22. Сила, действующая на проводник с током в магнитном поле 331
- •§ 22. Сила,, действующая на проводник с током в магнитном поле 333
- •§ 23. Сила, действующая назаряд, движущийся в магнитном поле 335
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле
- •§23. Сила, действующая назаряд, движущийся в магнитном поле 337
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле 339
- •§ 23. Сила, действующая на заряд, движущийся в магнитном поле 341
- •§23. Сила, действующая на заряд, движущийся в магнитном поле 343
- •§24. Закон полного тока. Магнитный поток. Магнитные цепи 345
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 347
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 349
- •§ 24. Закон полного тока. Магнитный поток. Магнитные цепи 351
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Работа по перемещению проводника
- •§ 25. Электромагнитная индукция. Индуктивность
- •§25. Электромагнитная индукция. Индуктивность 357
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 25. Электромагнитная индукция. Индуктивность
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 26. Энергия магнитного поля
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойсхва вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 27. Магнитные свойства вещества
- •§ 28. Геометрическая оптика
- •Глава 6
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 28. Геометрическая оптика
- •§ 29. Фотометрия
- •§ 29. Фотометрия
- •§ 29. Фотометрия
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§ 30. Интерференция света
- •§31. Дифракция света
- •§ 31. Дифракция света
- •§31. Дифракция света
- •§ 31. Дифракция света
- •§ 31. Дифракция света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 32. Поляризация света
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 33. Оптика движущихся тел
- •§ 34. Законы теплового излучения
- •Глава 7
- •§ 34. Законы теплового излучения
- •§ 34. Законы теплового излучения
- •§ 35. Фотоэлектрический эффект
- •§ 35. Фотоэлектрический эффект
- •§ 36. Давление света. Фотоны
- •§ 36. Давление света. Фотоны
- •§ 36. Давление света. Фотоны
- •§ 37. Эффект Комптона
- •§ 37. Эффект Комптона
- •§ 37. Эффект Комптона
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 38. Атом водорода и водородоподобные ионы
- •§ 39. Рентгеновское излучение
- •§ 39. Рентгеновское излучение
- •§ 39. Рентгеновское излучение
- •Глава 8
- •§ 40. Строение атомных ядер
- •§ 40. Строение атомных ядер
- •§ 40. Строение атомных ядер
- •§41. Радиоактивность
- •§ 41. Радиоактивность
- •§41. Радиоактивность
- •§ 42. Элементы дозиметрии ионизирующих излучении
- •§ 42. Элементы дозиметрии ионизирующих излучений
- •§ 42. Элементы дозиметрии ионизирующих излучений 465
- •§ 42. Элементы дозиметрии ионизирующих излучений 467
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§ 43. Дефект массы и энергия связи атомных ядер
- •§44. Ядерные реакции
- •§ 44. Ядерные реакции
- •§44. Ядерные реакции
- •§ 44. Ядерные реакции
- •§ 45. Волновые свойства микрочастиц
- •Глава 9
- •§ 45. Волновые свойства микрочастиц
- •§ 45. Волновые свойства микрочастиц
- •§ 45. Волновые свойства микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 46. Простейшие случаи движения микрочастиц
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 47. Строение атома
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 48. Спектры молекул
- •§ 49. Элементы кристаллографии
- •Глава 10
- •§ 49. Элементы кристаллографии
- •§ 49. Элементы кристаллографии
- •§ 49. Элементы кристаллографии
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§ 50. Тепловые свойства
- •§50. Тепловые свойства
- •§51. Электрические и магнитные свойства твердых тел 547
- •§ 51. Электрические и магнитные свойства твердых тел
- •§51. Электрические и магнитные свойства твердых тел 549
- •§ 51. Электрические и магнитные свойства твердых тел 551
- •§51. Электрические и магнитные свойства твердых тел 553
- •§51. Электрические и магнитные свойства твердых тел 555
- •§ 51. Электрические и магнитные свойства твердых тел 557
§ 21. Магнитное поле постоянного тока
Пример 4. Длинный провод с током / = 50 А изогнут под углом a = 2тг/3. Определить магнитную индукцию В в точке А (рис. 21.5). Расстояние d = 5 см.
Решение. Изогнутый провод можно рассматривать как два длин¬ных провода, концы которых соединены в точке О. В соответствии с принципом суперпозиции магнитных полей магнитная индукция В в точке А будет равна геометрической сумме магнитных индукций Bi и
Но г — величина переменная, зависящая от а и равная г = . Под-
sin a
ставив г в предыдущую формулу, найдем
(7)
АВ = sin a da.
4ят0
Чтобы определить магнитную индукпию поля, создаваемого отрезком проводника, проинтегрируем выражение (7) в пределах от ai до а2:
Рис. 21.5
Рис. 21.06
Q2
Но I 4ят0
AB =
sin a da =
/ sin a da,
или
(8)
В = (cosai - cosa2).
4тгг0
Заметим, что при симметричном расположении точки А относительно отрезка провода cosa2 = — cosa^. С учетом этого формула (8) при-мет вид
(9)
Вг полей, создаваемых отрезками длинных проводов 1 и £, т. е. В = = Bi + Вг- Магнитная индукция Вг равна нулю. Это следует из закона Био-Савара-Лапласа, согласно которому в точках, лежащих на оси про-водника, dB = 0 ([dlr] = 0).
Магнитную индукцию Bi найдем, воспользовавшись формулой (8), полученной в примере 3:
В =
(cosai - cosa2),
где го — кратчайшее расстояние от проводника 1 до точки А (рис. 21.6). В нашем случае ai -* 0 (проводник длинный; cosai = 1), аг = = а = 2тг/3 (cosа2 = cos(2тг/3) = -1/2). Расстояние r0 = dsin(тг -a) = = dsin(7r/3)= dy/3/2. Тогда магнитная индукция
1/2
Из рис. 21.4 следует cosai = .
/
выражение cosai в формулу (9), получим
I
= . Подставив
(10)
Так как В = Bi (B2 = 0), то
В =
Подставим числовые значения в формулу (10) и произведем вычи-сления:
4тг • Ю-7 • 30
0,6
В =
н
А -м
-5
(Гн/м) • А • м
2 - ж ■ 0,2 ^/4^(0,2)2 + (0,6)2 м2
= 2,49 ■ 10
= 24,9 мкТл.
Вектор В сонаправлен с вектором Вх и определяется правилом пра¬вого винта. На рис. 21.6 это направление отмечено значком х (перпен¬дикулярно плоскости чертежа от нас).
Проверка единиц аналогична выполненной в примере 1.
Произведем вычисления:
в = л/3-4*. ИГ7-50 (Гн/м)-А я 346 1()_5 Тл = 346 мкТл
47г • 5 • 10~2 м
20 Зак. 237
314
Гл. 5. Электромагнетизм
§ 21. Магнитное ладе постоянного тока
315
Пример 5. По тонкому проводящему кольцу радиусом R = 10см течет ток / = 80 А. Найти магнитную индукцию В в точке А, равноуда¬ленной от всех точек кольца на расстояние г = 20 см.
Решение. Для решения задачи воспользуемся законом Био-Сава-
ра-Лапласа:
где dB — магнитная индукция поля, со-здаваемого элементом тока /dl в точке, определяемой радиусом-вектором г.
Выделим на кольце элемент dl и от него в точку А проведем радиус-вектор г (рис. 21.7). Вектор dB направим в соот-ветствии с правилом буравчика.
i?i- точке Л определяется интегралом
Согласно принципу суперпозиции маг-нитных полей, магнитная индукция В в А
В =
Рис. 21.7
где интегрирование ведется по всем эле-ментам dl кольпа.
Разложим вектор dB на две составляющие: dBx — перпендикуляр¬ную плоскости кольца и dB|j — параллельную плоскости кольца, т.е.
dB = dBx + dB,|. Тогда В = /dBx + /dB,,.
L L
Заметив, что /dB|| = 0 из соображений симметрии и что векторы
L
dBx от различных элементов dl сонаправлены, заменим векторное сум-мирование (интегрирование) скалярным:
В =
где dB± = dBcosfi и dB = — (поскольку dl перпендикулярен г и,
следовательно, sin a = 1). Таким образом,
2тгЯ
4тгг2
о
После сокращения на 2тг и замены cos/З на R/r (рис. 21.7) получим
Выразим все величины в единицах СИ, произведем вычисления: „ 4тг ■ 10~7 • 80 • (0,1)2 (Гн/м) • А • м2
2 • (0,2)3
= 6,28 • 10~& Тл,
или В — 62,8 мкТл.
Вектор В направлен по оси кольца (штриховая стрелка на рис. 21.7) в соответствии с правилом буравчика.
Пример 6. Бесконечно длинный проводник изогнут так, как это изображено на рис. 21.8. Радиус дуги окружности R = 10 см. Определить магнитную индукцию В поля, создаваемого в точке О током / = 80 А, текущим по этому проводнику.
3
Рис. 21.9
Рис. 21.8
Решение. Магнитную индукцию В в точке О найдем, используя принцип суперпозиции магнитных полей В = $^В». В нашем случае проводник можно разбить на три части (рис. 21.9): два прямолинейных проводника (1 и 3), одним концом уходящие в бесконечность, и дугу полуокружности (2) радиуса R. Тогда
В = Bi + Вг + Вз,
где Bi, Вг и Вз — магнитные индукпии поля в точке О, создаваемые током, текущим соответственно на первом, втором и третьем участках проводника.
Так как точка О лежит на оси проводника 1, то В± = 0 и тогда
В = В2+В3.
Учитывая, что векторы Вг и Вз направлены в соответствии с правилом буравчика перпендикулярно плоскости чертежа от нас, геометрическое суммирование можно заменить алгебраическим:
В = В2+В3.
Магнитную индукцию поля В2 можно найти, используя выражение для магнитной индукции в центре кругового проводника с током /:
в =
20*
В =
2Д'
316
Гл.5. Электромагнетизм