
- •Историческая справка
- •Взаимосвязь тау с другими техническими науками
- •Основные понятия и определения тау
- •Основные характеристики оу
- •Примеры объектов управления
- •Типовая функциональная схема сар (замкнутая)
- •Классификация сау
- •Классификация по характеру динамических процессов в системе
- •1. Непрерывность.
- •2. Линейность.
- •Классификация по характеристикам управления
- •1. По принципу управления.
- •2. По управляющему воздействию (задающее воздействие).
- •3. Свойства в установившемся режиме.
- •Классификация сау по другим признакам
- •Основные (типовые) управляющие воздействия сау
- •Ступенчатому воздействию соответствует функция
- •Временные характеристики сау
- •Переходные характеристики h(t) и (t) называют также временными. Частотные динамические характеристики
- •Передаточной функцией w(p) называют отношение изображения выходной величины к изображению входной величины при нулевых начальных условиях.
- •С труктурная схема звена сау:
- •Типовые динамические звенья
- •Безынерционное звено
- •Апериодическое звено
- •Идеальное интегрирующее звено
- •Реальное интегрирующее звено
- •Изодромное интегрирующее звено
- •Примером изодромного интегрирующего звена может служить гидравлический демпфер, к поршню которого присоединена пружина. Идеальное дифференцирующее звено
- •Реальное дифференцирующее звено
- •Звено чистого запаздывания
- •Структурные схемы сау
- •Типовые элементы структурных схем сау
- •Многоконтурные структурные схемы
- •Некоторые правила структурных преобразований
- •Изображение структурных схем в виде графов
- •Устойчивость систем сау
- •Понятие устойчивости по Ляпунову.
- •Если свободная составляющая неограниченно возрастает, т.Е. Если
- •Критерий Гурвица Автоматическая система, описываемая характеристическим уравнением
- •Критерий Рауса
- •Принцип аргумента
- •Критерий Михайлова Рассмотрим характеристическое уравнение системы
- •Алгоритм применения критерия Михайлова.
- •Формулировка критерия Михайлова.
- •Критерий Найквиста
- •Изменение аргумента от 0 до :
- •Система неустойчивая.
- •Алгоритм использования критерия Найквиста
- •С равнительный анализ критериев устойчивости
- •Запас устойчивости Запас устойчивости по алгебраическому критерию Гурвица
- •Запас устойчивости при частотных критериях устойчивости
- •Устойчивость систем со звеном чистого запаздывания
- •Структурно устойчивые и структурно неустойчивые системы
- •Влияние параметров на устойчивость системы
- •Анализ качества сау Основные показатели качества сау
- •Прямые методы оценки качества
- •Классический метод определения показателей качества
- •Операторный метод
- •Частотный метод
- •Понятие обобщенной частотной передаточной функции
- •Определение показателей качества по типовым характеристикам
- •Приближенное определение показателей качества по виду р() (Косвенный метод)
- •О тбрасываемая часть при частотах свыше п влияет на начало переходной характеристики h(t).
- •Построение вещественной частотной характеристики с использованием лачх разомкнутой системы и номограмм Рассмотрим структурную схему:
- •Алгоритм построения вчх по номограмме
- •Моделирование с использованием вычислительных средств
- •Косвенные методы оценки показателей качества сау
- •Корневые методы оценки показателей качества
- •Связь колебательности с перерегулированием
- •Смещенные уравнения
- •Влияние нулей передаточной функции на качество переходного процесса
- •Диаграмма Вышнеградского
- •Интегральный метод оценки показателей качества
- •Линейная интегральная оценка
- •Метод Кулебакина
- •Апериодическая интегральная оценка
- •Особенности синтеза
- •Этапы синтеза сау
- •Желаемая лачх
- •Построение желаемой лачх
- •Синтез последовательных корректирующих устройств
- •Алгоритм построения сау с последовательными корректирующими звеньями
- •Синтез сау с параллельными корректирующими устройствами
- •Алгоритм построения сау с параллельными корректирующими звеньями
- •Влияние обратных связей на динамические свойства объекта
- •Обратной связью
- •Охват апериодического звена гибкой положительной обратной связью
- •Передаточная функция типовой одноконтурной системы
- •Тогда ошибка будет зависеть только от задающего воздействия
- •Ошибки статических и астатических систем при типовых задающих воздействиях
- •Тогда .
- •Ошибка при возмущающем воздействии, не равном нулю
- •Чувствительность параметров
- •Т иповые законы регулирования линейных систем
- •Описание сау методом пространства состояния
- •Схемы переменных состояний (спс)
- •Метод прямого программирования
- •Метод параллельного программирования
- •Метод последовательного программирования
- •Схемы переменных состояния типовых звеньев
- •Области применения методов программирования схем переменных состояния
Структурно устойчивые и структурно неустойчивые системы
Структурно устойчивой системой называется система, устойчивости которой можно добиваться, изменяя параметры звеньев, при этом тип звеньев и их соединения остаются неизменными.
З
Устойчивость такой системы достигается путем изменения коэффициентов усиления.
Структурно неустойчивой системой называется система, устойчивость которой может быть достигнута при изменении структуры (замена типов звеньев и характеров соединений).
Влияние параметров на устойчивость системы
D-разбиение по одному параметру
Теория устойчивости позволяет не только определить устойчивость данной системы, но и влияние некоторых параметров системы на ее устойчивость. Данное влияние определяется с помощью процедуры D-разбиения.
Предположим, что известно характеристическое уравнение системы:
В системе есть некоторый параметр (коэффициент k), который можно изменять, который входит линейно в характеристическое уравнение.
Тогда характеристическое уравнение можно разбить на 2 части:
где М(р) – члены характеристического уравнения, не содержащие параметр k, а D(p) – члены характеристического уравнения, содержащие коэффициент k линейно.
На
комплексной плоскости строится кривая
с
,
при этом левая часть штрихуется. Только
замкнутая область D
определяет пределы изменения данного
параметра, при которых система является
устойчивой. При изменении
,САУ
остается устойчивой.
Если подобных областей разбиения не оказывается, то система считается структурно неустойчивой и вывести ее установившееся состояние возможно, только лишь изменив структуру.
Вывод: теория устойчивости решает следующие вопросы:
Определение устойчивости системы (с помощью критериев устойчивости)
Влияние отдельных параметров системы на устойчивость системы в целом (метод D-разбиения).
Определение структуры неустойчивых систем (можно решить с помощью D-разбиения или алгебраических критериев).
Анализ качества сау Основные показатели качества сау
Качество САУ определяется следующими показателями:
Время достижения установившегося режима – такое время, по истечение которого для управляемой величины выполняется условие:
где у – управляемая величина; р – некоторая величина (для САУ 5% от установившегося режима).
Время переходного процесса –отрицательное время, при котором переходный процесс по выходной координате достигает 5%-ной зоны от устойчивого значения.
Перерегулирование - это процентное соотношение разницы максимального перерегулирования и установившегося значения:
.
2. а) Время максимального перерегулирования (tперерег), такое время, при котором выходная величина достигает своего максимального по модулю значения:
.
2. б) Число перерегулирований – это количество раз, когда управляемая величина превышает по модулю значение:
.
Колебательность () - кол-во колебаний, приходящихся на отрезок времени переходного процесса.
Ошибка в установившемся режиме (точность САУ)
.
Д
Для астатических систем:
П
Для анализа показаний качества управления могут быть использованы прямые и косвенные методы оценки. Прямые методы определения качества базируются на исследовании переходного процесса, дают наиболее достоверную информацию с последующим определением показаний качества. Но они являются самыми трудоемкими. Косвенные методы определения качества позволяют по косвенным признакам, не решая ни дифференциальных, ни характеристических уравнений, получить приближенный переходный процесс с приближенными показателями качества.