
- •Историческая справка
- •Взаимосвязь тау с другими техническими науками
- •Основные понятия и определения тау
- •Основные характеристики оу
- •Примеры объектов управления
- •Типовая функциональная схема сар (замкнутая)
- •Классификация сау
- •Классификация по характеру динамических процессов в системе
- •1. Непрерывность.
- •2. Линейность.
- •Классификация по характеристикам управления
- •1. По принципу управления.
- •2. По управляющему воздействию (задающее воздействие).
- •3. Свойства в установившемся режиме.
- •Классификация сау по другим признакам
- •Основные (типовые) управляющие воздействия сау
- •Ступенчатому воздействию соответствует функция
- •Временные характеристики сау
- •Переходные характеристики h(t) и (t) называют также временными. Частотные динамические характеристики
- •Передаточной функцией w(p) называют отношение изображения выходной величины к изображению входной величины при нулевых начальных условиях.
- •С труктурная схема звена сау:
- •Типовые динамические звенья
- •Безынерционное звено
- •Апериодическое звено
- •Идеальное интегрирующее звено
- •Реальное интегрирующее звено
- •Изодромное интегрирующее звено
- •Примером изодромного интегрирующего звена может служить гидравлический демпфер, к поршню которого присоединена пружина. Идеальное дифференцирующее звено
- •Реальное дифференцирующее звено
- •Звено чистого запаздывания
- •Структурные схемы сау
- •Типовые элементы структурных схем сау
- •Многоконтурные структурные схемы
- •Некоторые правила структурных преобразований
- •Изображение структурных схем в виде графов
- •Устойчивость систем сау
- •Понятие устойчивости по Ляпунову.
- •Если свободная составляющая неограниченно возрастает, т.Е. Если
- •Критерий Гурвица Автоматическая система, описываемая характеристическим уравнением
- •Критерий Рауса
- •Принцип аргумента
- •Критерий Михайлова Рассмотрим характеристическое уравнение системы
- •Алгоритм применения критерия Михайлова.
- •Формулировка критерия Михайлова.
- •Критерий Найквиста
- •Изменение аргумента от 0 до :
- •Система неустойчивая.
- •Алгоритм использования критерия Найквиста
- •С равнительный анализ критериев устойчивости
- •Запас устойчивости Запас устойчивости по алгебраическому критерию Гурвица
- •Запас устойчивости при частотных критериях устойчивости
- •Устойчивость систем со звеном чистого запаздывания
- •Структурно устойчивые и структурно неустойчивые системы
- •Влияние параметров на устойчивость системы
- •Анализ качества сау Основные показатели качества сау
- •Прямые методы оценки качества
- •Классический метод определения показателей качества
- •Операторный метод
- •Частотный метод
- •Понятие обобщенной частотной передаточной функции
- •Определение показателей качества по типовым характеристикам
- •Приближенное определение показателей качества по виду р() (Косвенный метод)
- •О тбрасываемая часть при частотах свыше п влияет на начало переходной характеристики h(t).
- •Построение вещественной частотной характеристики с использованием лачх разомкнутой системы и номограмм Рассмотрим структурную схему:
- •Алгоритм построения вчх по номограмме
- •Моделирование с использованием вычислительных средств
- •Косвенные методы оценки показателей качества сау
- •Корневые методы оценки показателей качества
- •Связь колебательности с перерегулированием
- •Смещенные уравнения
- •Влияние нулей передаточной функции на качество переходного процесса
- •Диаграмма Вышнеградского
- •Интегральный метод оценки показателей качества
- •Линейная интегральная оценка
- •Метод Кулебакина
- •Апериодическая интегральная оценка
- •Особенности синтеза
- •Этапы синтеза сау
- •Желаемая лачх
- •Построение желаемой лачх
- •Синтез последовательных корректирующих устройств
- •Алгоритм построения сау с последовательными корректирующими звеньями
- •Синтез сау с параллельными корректирующими устройствами
- •Алгоритм построения сау с параллельными корректирующими звеньями
- •Влияние обратных связей на динамические свойства объекта
- •Обратной связью
- •Охват апериодического звена гибкой положительной обратной связью
- •Передаточная функция типовой одноконтурной системы
- •Тогда ошибка будет зависеть только от задающего воздействия
- •Ошибки статических и астатических систем при типовых задающих воздействиях
- •Тогда .
- •Ошибка при возмущающем воздействии, не равном нулю
- •Чувствительность параметров
- •Т иповые законы регулирования линейных систем
- •Описание сау методом пространства состояния
- •Схемы переменных состояний (спс)
- •Метод прямого программирования
- •Метод параллельного программирования
- •Метод последовательного программирования
- •Схемы переменных состояния типовых звеньев
- •Области применения методов программирования схем переменных состояния
Устойчивость систем сау
Устойчивость автоматической системы – это свойство системы возвращаться в исходное состояние равновесия после прекращения воздействия, выведшего систему из этого состояния. Неустойчивая система не возвращается в исходное состояние, а непрерывно удаляется от него.
Здесь, в рисунке а), А0 – невозмущенное состояние, А2 – возмущенное состояние; на рисунке б) изображено неустойчивое состояние системы, а на рисунке в) – ее нейтральное состояние. По аналогии с состояниями можно ввести понятие возмущенного и невозмущенного движения.
Пусть
дана САУ, которая характеризуется
переменными
.
Движение системы при заданном режиме
определяется xi(t).Это
движение называется невозмущенное.
Допустим, что на систему воздействуют внешние силы, которые приводят к отклонению движения от невозмущенного.
,
где xi0(t) – движение, вызванное внешними возмущениями.
Если после снятия внешнего воздействия, спустя некоторое время, система вернется в некоторую область вокруг невозмущенного движения, то данное невозмущенное движение называется устойчивым.
Понятие устойчивости по Ляпунову.
Пусть САУ описывается с помощью системы уравнений при заданных начальных условиях:
Решением
данного уравнения является
как функция начальных значений (уравнение
невозмущенного движения). Здесь xi0
– установившееся движение.
К системе приложено внешнее воздействие, которое привело к отклонению движения от установившегося
.
Для данных отклонений можно записать систему уравнений:
Уравнение
- является уравнением возмущенного
движения.
Невозмущенное
движение (
)
называется устойчивым
по отношению к переменным xi,
если для любого положительного числа
А2,
как бы мало оно ни было, найдется другое
положительное число 2,
которое удовлетворяет условию для всех
возмущений:
,
а возмущенное движение удовлетворяет условию
,
где i – весовые коэффициенты.
Движение будет устойчивым, если при небольших изменениях начальных условий, вызванных внешними воздействиями, невозмущенное движение будет отличаться от возмущенного движения мало.
Данное определение справедливо как для линейных, так и для нелинейных систем.
Свободное движение линейной или линеаризованной системы описывается однородным дифференциальным уравнением
где
- свободная составляющая выходной
величины системы.
Система является устойчивой, если свободная составляющая xc(t) переходного процесса с течением времени стремится к нулю, т.е. если
.
Такая устойчивость называется асимптотической.
Если свободная составляющая неограниченно возрастает, т.Е. Если
,
то система неустойчива.
Наконец, если свободная составляющая не стремится ни к нулю, ни к бесконечности, то система находится на границе устойчивости.
Найдем общее условие, при котором система, описываемая уравнением (*), устойчива. Решение уравнения (*) равно сумме
где Ck – постоянные, зависящие от начальных условий; pk – корни характеристического уравнения
.
Корни данного уравнения могут быть действительными (pk=k), мнимыми (pk=jk) и комплексными (pk=k± jk).
Переходная
составляющая (**) при t
стремится к нулю лишь в том случае, если
каждое слагаемое вида
.
Характер этой функции времени зависит
от вида корня pk.
Рассмотрим все возможные случаи
расположения корней pk
на комплексной плоскости (см. рис.) и
соответствующие им функции xk(t),
которые показаны внутри кругов (как на
экране осциллографа).
1
Если k<0 (корень р1), то функция (***) при t стремится к нулю. Если k>0 (корень р3), то функция (***) неограниченно возрастает. Если k=0 (корень р2), то функция (***) остается постоянной.
2. Каждой паре сопряженных комплексных корней pk=k± jk в решении (**) соответствуют два слагаемых, объединенных в одно
Эта функция представляет собой синусоиду с частотой k и амплитудой, изменяющейся во времени по экспоненте. Если действительная часть двух комплексных корней k<0 (корни р4 и р5), то колебательная составляющая (****) будет затухать. Если k>0 (корни р8 и р9), то амплитуда колебаний будет неограниченно возрастать. Наконец, если k=0 (корни р6 и р7), т.е. если оба сопряженных корня – мнимые (pk=+ jk, pk+1=- jk), то xk(t) представляет собой незатухающую синусоиду с частотой k.
Общее условие устойчивости:
Для устойчивости линейной автоматической системы управления необходимо и достаточно, чтобы действительные части всех корней характеристического уравнения системы были отрицательны.
При этом действительные корни рассматриваются как частный случай комплексных корней, у которых мнимая часть равна нулю. Если хотя бы один корень имеет положительную действительную часть, то система будет неустойчивой.
Устойчивость системы зависит только от вида корней характеристического уравнения и не зависит от характера внешних воздействий на систему. Устойчивость есть внутренне свойство системы, присущее ей вне зависимости от внешних условий.
Используя геометрическое представление корней на комплексной плоскости (см. рис.) в виде векторов или точек, можно дать вторую формулировку общего условия устойчивости (эквивалентную основной):
Для устойчивости линейной системы необходимо и достаточно, чтобы все корни характеристического уравнения находились в левой полуплоскости. Если хотя бы один корень находится в правой полуплоскости, то система будет неустойчивой.
Мнимая
ось j
является границей устойчивости в
плоскости корней. Если характеристическое
уравнение имеет одну пару чисто мнимых
корней (pk=+jk,
pk+1=-jk),
а все остальные корни находятся в левой
полуплоскости, то в системе устанавливаются
незатухающие гармонические колебания
с круговой частотой
.
В этом случае говорят, что система
находится на колебательной
границе устойчивости.
Точка =0 на мнимой оси соответствует так называемому нулевому корню. Если уравнение имеет один нулевой корень, то система находится на апериодической границе устойчивости. Если таких корня два, то система неустойчива.