
- •Передмова
- •Предмет геодезії
- •1.1. Загальні відомості про геометричне нівелювання ні і IV класів
- •1.1.1. Призначення державної нівелірної мережі
- •1.1.2. Класифікація державної нівелірної мережі
- •1.1.4. Складання проекту нівелірної мережі
- •1.1.5. Нівелірні знаки
- •1.2.2. Головні вимоги до нівелірних рейок
- •1.2.4. Будова, перевірки та дослідження нівелірів з компенсаторами
- •1.2.5. Електронні цифрові нівеліри. Тотальні нівелірні станції
- •1.2.6. Перевірки та дослідження нівелірних рейок
- •1.2.8. Дослідження руху фокусувальної лінзи
- •Фокусувальної лінзи
- •1.3. Виконання нівелювання III та IV класів. Похибки та точність нівелювання
- •1.3.1. Послідовність роботи на станції під час нівелювання III класу
- •1.3.2. Послідовність роботи на станції під час нівелювання IV класу
- •1.3.3. Похибки нівелювання. Їхнє зменшення та усунення
- •1.3.4. Точність нівелювання III, IV класів
- •1.4. Зрівноваження нівелірних ходів та мереж
- •1.4.1. Зрівноваження висот окремого нівелірного ходу
- •1.4.2. Зрівноваження нівелірної мережі з однією вузловою точкою
- •1.4.3. Зрівноваження перевищень нівелірних мереж методом еквівалентної заміни
- •1.4.4. Зрівноваження висот нівелірних мереж методом еквівалентної заміни
- •1.4.6. Зрівноваження нівелірної мережі порівнянням нев'язок суміжних ходів
- •1.4.7. Зрівноваження нівелірної мережі методом в.В. Попова
- •11.1.12. Виведення формули поперечної похибки полігонометричного ходу з попередньо ув'язаними кутами
- •11.2.2. Виконання лінійних вимірювань підвісними мірними приладами
- •11.2.4. Розрахунок допусків на окреме джерело похибок лінійних вимірів
- •11.3. Кутові вимірювання у полігонометрії
- •11.3.4. Будова оптичних та електронних теодолітів та тахеометрів
- •Перелік робочих функцій клавіш
- •11.3.5. Перевірки теодолітів
- •11.3.6. Вимірювання горизонтальних кутів способом кругових прийомів
- •Журнал вимірювання кутів способом кругових прийомів (опрацювання без урахування "затягування" лімба)
- •11.3.9. Джерела похибок вимірювання горизонтальних кутів
- •11.3.12. Похибка редукції
- •11.3.13. Похибки центрування теодоліта
- •11.3.16. Інструментальні (приладні) похибки
- •11.3.17. Вплив зовнішнього середовища на вимірювання горизонтальних кутів
- •11.4. Попереднє опрацювання результатів польових вимірювань у полігонометрії
- •11.4.2. Редукування довжин ліній на рівень моря і на площину Гаусса-Крюгера
- •11.4.4. Оцінка точності лінійних вимірювань за результатами польових робіт
- •11.4.5. Оцінка точності кутових вимірювань за результатами польових робіт
- •11.5.9. Лінійна геодезична засічка
- •11.6. Світловіддалемірна полігонометрія. Основи теорії й практики світловіддалемірних вимірювань
- •11.6.9. Перевірки світловіддалеміра ст-5
- •Журнал вимірювання с/в "Блеск"
- •11.7. Оптично-віддалемірна полігонометрія
- •11.7.3. Віддалеміри подвійного зображення
- •11.7.4. Суть паралактичної полігонометрії
- •Коефіцієнти умовних рівнянь
- •Строгим методом
- •111.1. Будова та принцип роботи геодезичних супутникових систем
- •111.1.2. Найважливіші відомості про будову глобальних навігаційних систем
- •Кількісні значення похибок
- •111.1.5. Основні відомості про параметри орбіт супутників
- •111.1.7. Структурна схема геодезичного супутникового приймача
- •111.2.1. Технології gps-вимірювання
- •Орієнтовна тривалість спостережень у статичному режимі
- •111.2.8. Робота у режимі "кінематика"
- •111.3.2. Системи координат, що використовуються у космічній геодезії
- •III.3.4. Складання робочого проекту
- •111.3.5. Підготування комплексу приладів до польового вимірювання
- •Init mode
- •Фактори збурення орбіт супутників
- •111.4.4. Вплив іоносфери
- •Ill.4.5. Вплив тропосфери
- •Ill.4.6. Багатошляховість
- •Ill.4.7. Інструментальні джерела похибок
- •111.4.8. Геометричний фактор
- •IV. 1.1. Топографічні плани та карти
- •IV. 1.5. Обґрунтування масштабу знімання
- •IV.2. Робочі (знімальні) мережі великомасштабного топографічного знімання
- •IV.2.3. Аналітичні мережі (польові роботи)
- •IV.2.6. Розрахунок планової точності та допустимої довжини мензульного ходу
- •Параметри допустимих мензульних ходів під час великомасштабного знімання
- •Допустимі параметри теодолітних ходів для різних масштабів знімання, які прокладаються
- •IV.2.10. Тригонометричне нівелювання для створення висотної знімальної основи
- •IV.2.11. Вимірювання зенітних віддалей. Вертикальна рефракція
- •IV.3.1. Виконання аерофотознімання
- •IV.3.2. Складання накидного монтажу. Оцінка якості аерофотознімання
- •IV.3.4. Прив'язування знімків
- •IV. 3.6. Маркування розпізнавальних знаків
- •IV.3.7. Планове підготування аерознімків
- •IV. 3.8. Висотне підготування аерознімків
- •IV. 3.11. Трансформування знімків
- •IV.3.12. Складання фотопланів
- •IV. 3.13. Складання графічних планів
- •IV.4.1. Встановлення мензули над точкою
- •IV. 6.1. Цифрова аерознімальна система
- •Основні технічні характеристики цифрової аерознімальної системи ads40
- •IV.6.3. Цифрові аерознімальні комплекси із лазерним скануванням
- •V.1. Автоматизація топографо-геодезичних робіт
- •V.1.7. Електронна тахеометрія
- •V. 1.8. Автоматичні координатографи
- •V.1.10. Наземні лазерні сканери
- •Технічні характеристики сканера hds 3000
- •V.2. Цифрові плани та карти
- •V.2.9. Сканування фотознімків
- •V. 2.10. Цифрові фотокамери
- •V.2.11. Цифрові фотограмметричні станції
111.1. Будова та принцип роботи геодезичних супутникових систем
///. 1.1. Принцип роботи систем визначення просторового положення точок
Більшість високоточних приладів наземної геодезії (теодоліти, нівеліри, світловіддалеміри, тахеометри тощо) удосконалені завдяки вдалим технічним рішенням та продуманим технологіям їхнього використання. Проте майже всі вони використовують оптичний діапазон електромагнітних хвиль.
Це, по-перше, спричинило певні недоліки, наприклад: необхідність під час вимірювання не тільки прямої (геометричної), але й оптичної видимості між пунктами; певні складності цілодобових спостережень; неможливість безперервних моніторингових спостережень та багато інших.
Другою особливістю традиційного геодезичного вимірювання є значне поширення вимірювання кутів, хоча сучасні світловіддалеміри забезпечують вищий рівень точності. Крім того, наземне вимірювання виконується у прошарках високодинамічної атмосфери, що істотно ускладнює вимірювання і знижує потенціальний рівень точності.
Альтернативний підхід до геодезичного вимірювання на принципово іншій основі проявився у застосуванні просторових методів вимірювань із використанням миттєвого положення штучних супутників Землі як точок із відомими координатами. Засновані на такому принципі вимірювальні комплекси отримали назву глобальних систем позиціонування, початковим призначенням яких було розв'язання навігаційних задач.
Проте подальші дослідження показали, що завдяки приладному та програмному забезпеченню такі системи можуть бути використані для розв'язання широкого кола геодезичних задач та різко підвищити продуктивність та точність вимірювань.
Під час вибору найефективнішого діапазону електромагнітних хвиль враховувалось те, що ці системи повинні забезпечити виконання вимірювання під час будь-яких погодних умов. Дослідженнями встановлено, що саме таким є ультракороткий діапазон радіохвиль.
Ще одна особливість супутникових віддалемірних систем - те, що вони повинні уможливити одночасне забезпечення вимірювання віддалі між незнач-
322
Просторові супутникові мережі (основи супутникової геодезії)
ною кількістю супутників та необмеженою кількістю станцій, що розміщені на земній поверхні. Під час створення масової портативної апаратури доцільно унеможливити двосторонній обмін інформацією, як це прийнято під час наземного вимірювання, тобто вимкнути радіопередавальні пристрої, що мали б входити до складу апаратури користувача. Ця вимога визначила необхідність застосування одностороннього методу вимірювання довжин і значно спростила будову наземних та супутникових приладів. Головна особливість одностороннього методу вимірювання у тому, що передавальний пристрій встановлено на супутнику, а приймальний - на наземному пункті. Інформаційний сигнал проходить тільки в одному напрямку, а саме від супутника до приймача [2]. В основу цього методу покладена проста функціональна блок-схєма (рис. III. 1.1). З рисунка видно, що інформаційний сигнал справді проходить віддаль S тільки в одному напрямку. Якщо миті випромінювання та приймання цього сигналу зафіксовані точно синхронізованими годинниками, які встановлені на супутнику та наземному пункті і які реалізуються на основі відповідних високостабільних опорних генераторів, то віддаль S може бути визначена за формулою
(Ш.1.1)
де
с
-
швидкість ЕМХ; т - визначений час
проходження віддалі сигналом.
Множник — у (Ш.1.1) відсутній, оскільки сигнал проходить віддаль S один раз. Оскільки ЕМХ за одну наносекунду (1нс = 11(Г9с) проходять
323
Розділ
III
віддаль близько ЗО см, то для забезпечення сантиметрового рівня точності необхідно синхронізувати годинники на супутнику та на приймачу до сотих часток наносекунди. Але сучасний рівень техніки поки що не дає змоги цього зробити. Тому необхідно враховувати асинхронність цих годинників, що ускладнює розв'язання задачі і вимагає одночасного вимірювання віддалей від точки на поверхні Землі (координати якої визначаються) до чотирьох супутників, як мінімум. Зауважимо, що віддалі, виміряні без урахування синхронізації годинників, називають псевдовіддалями.
Вимірювання супутникової геодезії ґрунтується переважно на використанні глобальної позиційної системи GPS (Global Positioning System), що останнім часом широко застосовується в усіх видах геодезичних робіт. Менш відомою є система ГЛОНАСС, запропонована Росією.
Супутникова геодезія зарекомендувала себе цілою низкою кардинальних переваг перед наземною геодезією. Найважливіші з них:
зникла необхідність будувати зовнішні геодезичні знаки;
з'явилася можливість об'єднати планові і висотні пункти геодезичних мереж, оскільки система GPS дає одночасно просторове положення цих пунктів;
значно коротший час, необхідний для отримання кінцевих результатів;
можливість повнішої автоматизації вимірювання;
значне зменшення вартості робіт.
GPS-вимірювання використовують не тільки для встановлення положення пунктів геодезичної основи, топографічного та кадастрового знімання, інженерної геодезії, але й в геодинамічних дослідженнях, для визначення таких важливих параметрів геодинаміки, як рухи полюсів нашої планети, стабільності обертових рухів Землі та інших параметрів.
Усе вищесказане та, особливо, висока точність GPS-вимірювання є причиною того, що "Основні положення створення державної геодезичної мережі", затверджені Постановою Кабінету Міністрів України від 8 червня 1998 р. № 8441, передбачають створення нових та оновлення наявних мереж сучасними радіонавігаційними системами (GPS) та комп'ютерними технологіями. Допускається застосування традиційних геодезичних методів. Проте традиційні методи вже нездатні конкурувати з методами космічної геодезії. Щоправда, поки що таку конкуренцію витримує високоточне геометричне нівелювання, яке, до того ж, ще необхідне для визначення геоїда.
324
Просторові супутникові мережі (основи супутникової геодезні)