
- •Передмова
- •Предмет геодезії
- •1.1. Загальні відомості про геометричне нівелювання ні і IV класів
- •1.1.1. Призначення державної нівелірної мережі
- •1.1.2. Класифікація державної нівелірної мережі
- •1.1.4. Складання проекту нівелірної мережі
- •1.1.5. Нівелірні знаки
- •1.2.2. Головні вимоги до нівелірних рейок
- •1.2.4. Будова, перевірки та дослідження нівелірів з компенсаторами
- •1.2.5. Електронні цифрові нівеліри. Тотальні нівелірні станції
- •1.2.6. Перевірки та дослідження нівелірних рейок
- •1.2.8. Дослідження руху фокусувальної лінзи
- •Фокусувальної лінзи
- •1.3. Виконання нівелювання III та IV класів. Похибки та точність нівелювання
- •1.3.1. Послідовність роботи на станції під час нівелювання III класу
- •1.3.2. Послідовність роботи на станції під час нівелювання IV класу
- •1.3.3. Похибки нівелювання. Їхнє зменшення та усунення
- •1.3.4. Точність нівелювання III, IV класів
- •1.4. Зрівноваження нівелірних ходів та мереж
- •1.4.1. Зрівноваження висот окремого нівелірного ходу
- •1.4.2. Зрівноваження нівелірної мережі з однією вузловою точкою
- •1.4.3. Зрівноваження перевищень нівелірних мереж методом еквівалентної заміни
- •1.4.4. Зрівноваження висот нівелірних мереж методом еквівалентної заміни
- •1.4.6. Зрівноваження нівелірної мережі порівнянням нев'язок суміжних ходів
- •1.4.7. Зрівноваження нівелірної мережі методом в.В. Попова
- •11.1.12. Виведення формули поперечної похибки полігонометричного ходу з попередньо ув'язаними кутами
- •11.2.2. Виконання лінійних вимірювань підвісними мірними приладами
- •11.2.4. Розрахунок допусків на окреме джерело похибок лінійних вимірів
- •11.3. Кутові вимірювання у полігонометрії
- •11.3.4. Будова оптичних та електронних теодолітів та тахеометрів
- •Перелік робочих функцій клавіш
- •11.3.5. Перевірки теодолітів
- •11.3.6. Вимірювання горизонтальних кутів способом кругових прийомів
- •Журнал вимірювання кутів способом кругових прийомів (опрацювання без урахування "затягування" лімба)
- •11.3.9. Джерела похибок вимірювання горизонтальних кутів
- •11.3.12. Похибка редукції
- •11.3.13. Похибки центрування теодоліта
- •11.3.16. Інструментальні (приладні) похибки
- •11.3.17. Вплив зовнішнього середовища на вимірювання горизонтальних кутів
- •11.4. Попереднє опрацювання результатів польових вимірювань у полігонометрії
- •11.4.2. Редукування довжин ліній на рівень моря і на площину Гаусса-Крюгера
- •11.4.4. Оцінка точності лінійних вимірювань за результатами польових робіт
- •11.4.5. Оцінка точності кутових вимірювань за результатами польових робіт
- •11.5.9. Лінійна геодезична засічка
- •11.6. Світловіддалемірна полігонометрія. Основи теорії й практики світловіддалемірних вимірювань
- •11.6.9. Перевірки світловіддалеміра ст-5
- •Журнал вимірювання с/в "Блеск"
- •11.7. Оптично-віддалемірна полігонометрія
- •11.7.3. Віддалеміри подвійного зображення
- •11.7.4. Суть паралактичної полігонометрії
- •Коефіцієнти умовних рівнянь
- •Строгим методом
- •111.1. Будова та принцип роботи геодезичних супутникових систем
- •111.1.2. Найважливіші відомості про будову глобальних навігаційних систем
- •Кількісні значення похибок
- •111.1.5. Основні відомості про параметри орбіт супутників
- •111.1.7. Структурна схема геодезичного супутникового приймача
- •111.2.1. Технології gps-вимірювання
- •Орієнтовна тривалість спостережень у статичному режимі
- •111.2.8. Робота у режимі "кінематика"
- •111.3.2. Системи координат, що використовуються у космічній геодезії
- •III.3.4. Складання робочого проекту
- •111.3.5. Підготування комплексу приладів до польового вимірювання
- •Init mode
- •Фактори збурення орбіт супутників
- •111.4.4. Вплив іоносфери
- •Ill.4.5. Вплив тропосфери
- •Ill.4.6. Багатошляховість
- •Ill.4.7. Інструментальні джерела похибок
- •111.4.8. Геометричний фактор
- •IV. 1.1. Топографічні плани та карти
- •IV. 1.5. Обґрунтування масштабу знімання
- •IV.2. Робочі (знімальні) мережі великомасштабного топографічного знімання
- •IV.2.3. Аналітичні мережі (польові роботи)
- •IV.2.6. Розрахунок планової точності та допустимої довжини мензульного ходу
- •Параметри допустимих мензульних ходів під час великомасштабного знімання
- •Допустимі параметри теодолітних ходів для різних масштабів знімання, які прокладаються
- •IV.2.10. Тригонометричне нівелювання для створення висотної знімальної основи
- •IV.2.11. Вимірювання зенітних віддалей. Вертикальна рефракція
- •IV.3.1. Виконання аерофотознімання
- •IV.3.2. Складання накидного монтажу. Оцінка якості аерофотознімання
- •IV.3.4. Прив'язування знімків
- •IV. 3.6. Маркування розпізнавальних знаків
- •IV.3.7. Планове підготування аерознімків
- •IV. 3.8. Висотне підготування аерознімків
- •IV. 3.11. Трансформування знімків
- •IV.3.12. Складання фотопланів
- •IV. 3.13. Складання графічних планів
- •IV.4.1. Встановлення мензули над точкою
- •IV. 6.1. Цифрова аерознімальна система
- •Основні технічні характеристики цифрової аерознімальної системи ads40
- •IV.6.3. Цифрові аерознімальні комплекси із лазерним скануванням
- •V.1. Автоматизація топографо-геодезичних робіт
- •V.1.7. Електронна тахеометрія
- •V. 1.8. Автоматичні координатографи
- •V.1.10. Наземні лазерні сканери
- •Технічні характеристики сканера hds 3000
- •V.2. Цифрові плани та карти
- •V.2.9. Сканування фотознімків
- •V. 2.10. Цифрові фотокамери
- •V.2.11. Цифрові фотограмметричні станції
11.7.3. Віддалеміри подвійного зображення
Оптичні віддалеміри подвійного зображення поширеніші у виробництві, ніж віддалеміри одноразового зображення. У таких віддалемірах, створених у кінці XIX століття, промені світла, що йдуть через об'єктив зорової труби,
276
Планові геодезичні мережі
розділяються на два пучки. Це досягається завдяки тому, що перед об'єктивом ставлять оптичний клин, який перекриває половину поля зору труби (рис. И.7.4).
Рис. 11.7.4. Оптичний клин: а - загальний вигляд; б - оптичний клин перекриває половину об'єктива зорової труби
Вертикальний розріз зорової труби з оптичним клином, встановленим на об'єктив, показано на рис. ІІ.7.5.
Горизонтальна вісь обертання труби проходить через точку О . Точка Р -так звана аналатична (вимірювальна) точка. Якраз у цій точці відбувається розділення (заломлення тієї частини променів світла, що проходить через об'єктив і клин). Та частина променів, яка проходить тільки через об'єктив, не заломлюється. У результаті в полі зору труби видно дві рейки, зміщені по вертикалі одна відносно одної, тобто видно подвійне зображення рейки. Інакше кажучи, точка Р проектується на рейку подвійно: у точці М тав точці ./V.
Рис. II. 7'.5. Вертикальний розріз зорової труби з оптичним клином та принцип роботи
віддалеміра подвійного зображення: 1 - окуляр; 2 - фокусувальна лінза;
З - об'єктив; 4 - оптичний клин
Якщо на рейці між точками М та N є п поділок рейки, а одна поділка завширшки a , тоді відрізок MN = an.
Розглядаючи трикутникPMN, запишемо:
277
Розділ II
або
(ІІ.7.16)
Оскільки кут ф незмінний, то й ctg ф - стала величина. Позначимо ^ф =С'. Тоді (II.7.16) набуде вигляду:
(П.7.17)
Введемо
нове позначення:
(П.7.18) отримаємо:
(П.7.19)
Формула (П.7.19) така сама, як і формула ниткового віддалеміра. Проте завдяки подвійному зображенню відрізок на рейці п ■ а може бути виміряний значно точніше ніж нитковим віддалеміром. У цьому перевага віддалеміра подвійного зображення порівняно з нитковим віддалеміром. Завдяки саме цій перевазі віддалеміри подвійного зображення значно точніші від віддалемірів одноразового зображення.
Розглянутий тільки що віддалемір подвійного зображення з постійним кутом ф та змінним базисом Ь = ап. Інколи замість оптичного клина перед
об'єктивом труби розташовують лінзові компенсатори, які дають змогу не тільки змінювати, але й вимірювати змінний кут ф між двома пучками променів. Тоді ми маємо віддалемір з постійним базисом b (горизонтальним або вертикальним) та змінним кутом ф.
Оптичні віддалеміри, як правило, є віддалемірами подвійного зображення.
Відповідно до ДЕСТу в СРСР випускали оптичні віддалеміри трьох типів. Всі вони подвійного зображення.
ДН8 (віддалемірна насадка, 8 см - похибка на 100 м довжини). За допомогою ДН8 вимірюються нахилені (не редуковані на горизонтальну площину) віддалі. Це віддалемір з постійним базисом Ь та змінним кутом ф. Рейка встановлюється на штативі горизонтально. Можна вимірювати довжини від 50 до 700 м з відносною похибкою 1:1000. Використовується для вимірювання ліній у теодолітних ходах. Може бути застосована в полігонометрії, якщо виконувати вимірювання ліній створним методом короткими відрізками.
ДНР5 (віддалемірна насадка, редукційна, 5 см - похибка на 100 м довжини). Дає змогу (для кутів нахилу до 12°) автоматично редукувати й одержувати горизонтальні прокладення ліній з відносною похибкою 1:1000-1:2000 завдовжки 20-120 м. Рейка двостороння, вертикальна. Це віддалемір з постійним кутом ф та змінним базисом Ь. Використовується так само, як і ДН8.
278
Планові геодезичні мережі
Д-2 (відцалемір, 2 см - похибка на 100 м довжини). Це удосконалений віддалемір ДН8; також з постійним базисом Ь та змінним кутом ф. Рейку можна встановлювати на штативі горизонтально або вертикально. Дає змогу вимірювати похилі (не редуковані) віддалі 40-400 м з відносною похибкою 1:5000. Можна вимірювати віддалі до 700 м, тільки тоді точність 1:1000. Використовується для вимірювання ліній у полігонометрії 2 розряду та в теодолітних ходах.