
- •Передмова
- •Предмет геодезії
- •1.1. Загальні відомості про геометричне нівелювання ні і IV класів
- •1.1.1. Призначення державної нівелірної мережі
- •1.1.2. Класифікація державної нівелірної мережі
- •1.1.4. Складання проекту нівелірної мережі
- •1.1.5. Нівелірні знаки
- •1.2.2. Головні вимоги до нівелірних рейок
- •1.2.4. Будова, перевірки та дослідження нівелірів з компенсаторами
- •1.2.5. Електронні цифрові нівеліри. Тотальні нівелірні станції
- •1.2.6. Перевірки та дослідження нівелірних рейок
- •1.2.8. Дослідження руху фокусувальної лінзи
- •Фокусувальної лінзи
- •1.3. Виконання нівелювання III та IV класів. Похибки та точність нівелювання
- •1.3.1. Послідовність роботи на станції під час нівелювання III класу
- •1.3.2. Послідовність роботи на станції під час нівелювання IV класу
- •1.3.3. Похибки нівелювання. Їхнє зменшення та усунення
- •1.3.4. Точність нівелювання III, IV класів
- •1.4. Зрівноваження нівелірних ходів та мереж
- •1.4.1. Зрівноваження висот окремого нівелірного ходу
- •1.4.2. Зрівноваження нівелірної мережі з однією вузловою точкою
- •1.4.3. Зрівноваження перевищень нівелірних мереж методом еквівалентної заміни
- •1.4.4. Зрівноваження висот нівелірних мереж методом еквівалентної заміни
- •1.4.6. Зрівноваження нівелірної мережі порівнянням нев'язок суміжних ходів
- •1.4.7. Зрівноваження нівелірної мережі методом в.В. Попова
- •11.1.12. Виведення формули поперечної похибки полігонометричного ходу з попередньо ув'язаними кутами
- •11.2.2. Виконання лінійних вимірювань підвісними мірними приладами
- •11.2.4. Розрахунок допусків на окреме джерело похибок лінійних вимірів
- •11.3. Кутові вимірювання у полігонометрії
- •11.3.4. Будова оптичних та електронних теодолітів та тахеометрів
- •Перелік робочих функцій клавіш
- •11.3.5. Перевірки теодолітів
- •11.3.6. Вимірювання горизонтальних кутів способом кругових прийомів
- •Журнал вимірювання кутів способом кругових прийомів (опрацювання без урахування "затягування" лімба)
- •11.3.9. Джерела похибок вимірювання горизонтальних кутів
- •11.3.12. Похибка редукції
- •11.3.13. Похибки центрування теодоліта
- •11.3.16. Інструментальні (приладні) похибки
- •11.3.17. Вплив зовнішнього середовища на вимірювання горизонтальних кутів
- •11.4. Попереднє опрацювання результатів польових вимірювань у полігонометрії
- •11.4.2. Редукування довжин ліній на рівень моря і на площину Гаусса-Крюгера
- •11.4.4. Оцінка точності лінійних вимірювань за результатами польових робіт
- •11.4.5. Оцінка точності кутових вимірювань за результатами польових робіт
- •11.5.9. Лінійна геодезична засічка
- •11.6. Світловіддалемірна полігонометрія. Основи теорії й практики світловіддалемірних вимірювань
- •11.6.9. Перевірки світловіддалеміра ст-5
- •Журнал вимірювання с/в "Блеск"
- •11.7. Оптично-віддалемірна полігонометрія
- •11.7.3. Віддалеміри подвійного зображення
- •11.7.4. Суть паралактичної полігонометрії
- •Коефіцієнти умовних рівнянь
- •Строгим методом
- •111.1. Будова та принцип роботи геодезичних супутникових систем
- •111.1.2. Найважливіші відомості про будову глобальних навігаційних систем
- •Кількісні значення похибок
- •111.1.5. Основні відомості про параметри орбіт супутників
- •111.1.7. Структурна схема геодезичного супутникового приймача
- •111.2.1. Технології gps-вимірювання
- •Орієнтовна тривалість спостережень у статичному режимі
- •111.2.8. Робота у режимі "кінематика"
- •111.3.2. Системи координат, що використовуються у космічній геодезії
- •III.3.4. Складання робочого проекту
- •111.3.5. Підготування комплексу приладів до польового вимірювання
- •Init mode
- •Фактори збурення орбіт супутників
- •111.4.4. Вплив іоносфери
- •Ill.4.5. Вплив тропосфери
- •Ill.4.6. Багатошляховість
- •Ill.4.7. Інструментальні джерела похибок
- •111.4.8. Геометричний фактор
- •IV. 1.1. Топографічні плани та карти
- •IV. 1.5. Обґрунтування масштабу знімання
- •IV.2. Робочі (знімальні) мережі великомасштабного топографічного знімання
- •IV.2.3. Аналітичні мережі (польові роботи)
- •IV.2.6. Розрахунок планової точності та допустимої довжини мензульного ходу
- •Параметри допустимих мензульних ходів під час великомасштабного знімання
- •Допустимі параметри теодолітних ходів для різних масштабів знімання, які прокладаються
- •IV.2.10. Тригонометричне нівелювання для створення висотної знімальної основи
- •IV.2.11. Вимірювання зенітних віддалей. Вертикальна рефракція
- •IV.3.1. Виконання аерофотознімання
- •IV.3.2. Складання накидного монтажу. Оцінка якості аерофотознімання
- •IV.3.4. Прив'язування знімків
- •IV. 3.6. Маркування розпізнавальних знаків
- •IV.3.7. Планове підготування аерознімків
- •IV. 3.8. Висотне підготування аерознімків
- •IV. 3.11. Трансформування знімків
- •IV.3.12. Складання фотопланів
- •IV. 3.13. Складання графічних планів
- •IV.4.1. Встановлення мензули над точкою
- •IV. 6.1. Цифрова аерознімальна система
- •Основні технічні характеристики цифрової аерознімальної системи ads40
- •IV.6.3. Цифрові аерознімальні комплекси із лазерним скануванням
- •V.1. Автоматизація топографо-геодезичних робіт
- •V.1.7. Електронна тахеометрія
- •V. 1.8. Автоматичні координатографи
- •V.1.10. Наземні лазерні сканери
- •Технічні характеристики сканера hds 3000
- •V.2. Цифрові плани та карти
- •V.2.9. Сканування фотознімків
- •V. 2.10. Цифрові фотокамери
- •V.2.11. Цифрові фотограмметричні станції
1.4. Зрівноваження нівелірних ходів та мереж
1.4.1. Зрівноваження висот окремого нівелірного ходу
Розглянемо спочатку зрівноваження окремого нівелірного ходу, прокладеного між двома реперами старших класів. У першій частині курсу подано спосіб зрівноваження перевищень такого ходу. Розглянемо можливість безпосереднього зрівноваження висот. Нехай маємо виміряні та обчислені середні перевищення із прямих та зворотних ходів між усіма сусідніми реперами ходу, а відомі тільки висоти кінцевих реперів. Необхідно визначити висоти усіх новозакладених реперів. Припустимо, ми, користуючись висотою початкового репера Нп та середніми перевищеннями, обчислимо приблизні
висоти всіх проміжних реперів, зокрема й кінцевого репера, висота якого Нк -відома. Отримаємо нову висоту цього репера Н'к . А потім навпаки, користуючись висотою Нк , обчислимо ще раз наближені висоти всіх інших реперів, зокрема й початкового репера. Одержимо нову висоту цього репера Н'п. За результатами цих даних побудуємо подвійний профіль, поданий на рис. 1.4.1.
Різниця Н'к -Нк =+ff, являє собою нев'язку ходу Rpn -RpK. Одночасно Н'п -Нп =-fh - теж нев'язка, але ходу RpK -Rpn. Як це видно з подвійного профілю, для всіх реперів отримано дві висоти. Різниця висот цих реперів дає нев'язку. Для репера Е
(1.4.1)
85
Розділ І
(1.4.2)
Нехай кількість штативів у ході до репера Е дорівнює к . Якщо всього у ході п штативів, тоді кількість штативів від репера Е до кінцевого репера дорівнює п-к. За ваги цих двох частин ходу приймемо величини, обернені до кількості штативів у цих частинах ходу, тобто
1 „ 1
к п-к
Крім того, на основі рис. 1.4.1, можемо записати:
(1.4.3)
Підставивши значення НЕ із (1.4.3) у (1.4.2), отримаємо:
нБі Рх +нЕх р2-л-р2 _нЕі(р1+р2)-л-р2
Р1+Р2 Поділивши почленно чисельник на суму (Р{ + Р2), одержимо:
Перетворимо дріб
рї+р2
п-к
Р]+Р2 1 1 п-к + к
1
к п-к к(п-к) к(п-к)
Висотні геодезичні мережі
Р7 к
Підставивши значення — = — у (1.4.4), матимемо кінцеву формулу:
Рх + Р2 п
(1.4.5)
Оскільки репер Е вибрано довільно, то ця формула придатна для обчислення найімовірнішої висоти будь-якого репера. На підставі формули можна сформулювати правило таких обчислень: зрівноважена висота будь-якого репера дорівнює наближеній висоті, отриманій за середніми перевищеннями плюс поправка, яка дорівнює нев 'язці ходу, взятій з оберненим знаком, поділеній на кількість станцій у всьому ході і помноженій на кількість станцій до цього репера.
Під час обчислення поправок у наближені висоти доцільно нев'язку, взяту
f з оберненим знаком, розділити на п, тобто отримати постійний коефіцієнт —, а
п
потім цей коефіцієнт множити на змінну k - кількість станцій до репера, висоту якого визначають.
Визначимо найслабше місце ходу, тобто місце, де висоти реперів визначаються з найбільшою похибкою. Висота кожного з реперів обчислювалась два рази: від початкового та від кінцевого репера і наприклад, для репера Е , висоти
нех та НЕ2 ■
Середнє значення висоти Нсер, отримане з вагою Р, що дорівнює сумі ваг
Рх та Р2, тобто: Р = Рх + Р2, або:
(1.4.6)
Найбільшу похибку у висоті буде мати репер, вага якого Р - найменша. Відповідно до (1.4.6) Р буде мінімальним, якщо знаменник к(п - к) буде максимальним. Отже, маємо задачу на екстремум функції. Позначимо знаменник:
(1.4.7)
Візьмемо першу похідну по к та прирівняємо її до нуля:
— = п-2к-0. Звідси: dk
(1.4.8)
Отже, найслабше місце ходу - його середина.
87
Розділ І