
- •1 Классификация усилительных устройств.
- •2. Основные технические показатели и характеристики усилителя.
- •4. Апериодические усилительные каскады в режиме малого сигнала
- •5. Типы усилителей.
- •6. Усилители с rс-связями.
- •7. Усилители постоянного тока.
- •8. Работа транзисторного усилительного каскада на высоких частотах.
- •11. Общие сведения и принципы построения импульсных усилителей.
- •1. Общие сведения и принципы построения импульсных усилителей
- •12. Анализ импульсного усилителя в области малых времен.
- •13. Анализ импульсного усилителя в области больших времен.
- •14. Общие сведения об операционных усилителях.
- •2 Общие сведения об операционных усилителях
- •15. Основные характеристики оу.
- •17. Свойства операционного усилителя.
- •19. Коррекция частотной характеристики оу.
- •20. Устройства перемножения и деления сигналов.
- •21. Общие сведения об активных фильтрах.
- •22. Пассивные rс – фильтры.
- •23. Реализация активных фильтров.
- •24. Активные фильтры высокого порядка.
- •25. Полосовые и заграждающие аф
- •26. Общие сведения о регулировках тембра
- •27. Принцип регулировки тембра на основе аф
- •28. Регулятор тембра на основе аф.
- •29. Математические модели аналоговой радиоэлектронной системы (рэс).
- •30. Математические модели логических схем цифровой рэс.
- •32. Информационные технологии схемотехнического моделирования аналого-цифровых устройств.
- •34. Общая характеристика задач автоматизации конструкторского проектирования рэс
- •35. Электронные коммутаторы
- •17.5.1. Статические характеристики.
- •17.5.2. Динамические характеристики.
- •17.5.3. Эксплуатационные параметры.
- •17.6.1. Влияние нелинейности аналоговых коммутаторов на искажения передаваемых
- •17.6.2. Защита коммутаторов от перенапряжений.
- •17.7.1. Схемы устройств выборки хранения.
- •17.7.2. Основные характеристики увх.
- •17.7.3. Применение увх.
- •13.1. Общие сведения о компараторах
- •13.2. Аналоговый интегральный компаратор
- •13.2.1. Принципы построения интегральных компараторов
- •13.2.2. Компараторы с однополярным питанием
- •13.2.3. Скоростные компараторы
- •13.3. Применение компараторов
- •13.3.1. Двухпороговый компаратор
- •13.3.2. Детектор пересечения нуля
- •13.3.3. Сравнение напряжений противоположной полярности
- •46. Применение цап.
- •9.8.1. Системы сбора данных
- •9.8.2. Кодеки
- •9.8.3. Измерение энергии
- •9.8.4. Управление двигателями переменного тока
23. Реализация активных фильтров.
Активные фильтры бывают первого, второго, третьего и высших порядков. Порядок фильтра определяется числом RC звеньев.
Для получения АФ пассивный RС - фильтр включают в схему усилителя. АФНЧ первого порядка на ОУ легко реализуется по схеме рис.4,а, в которой использовано неинвертирующее включение.
Рис. 4. Активный фильтр НЧ первого порядка с RС - фильтром:
а – в цепи межкаскадной связи; б – в цепи ООС
АЧХ АФ определяется выражением
,
(2)
где
;
.
Если RC-фильтр включается в цепь ООС, то для получения фильтра нижних частот в цепи обратной связи необходимо использовать ФВЧ, так как при включении пассивного фильтра в цепь ООС происходит преобразование ФНЧ в ФВЧ и обратно. Активный ФНЧ первого порядка с инвертирующим усилителем приведен на рис. 4,б. K(ω) определяется выражением (2),
где
;
.
АЧХ активного фильтра низкой частоты приведена на рис.5. АЧХ разомкнутого ОУ приведена штриховой линией.
Рис.5. АЧХ активного фильтра НЧ
24. Активные фильтры высокого порядка.
Для увеличения крутизны АЧХ т.е. избирательности применяют АФ высокого порядка. В целях обеспечения устойчивой работы в одном ОУ включается не более трех звеньев пассивных RC - фильтров. Поэтому АФ высокого порядка строят на нескольких ОУ, соединив последовательно АФ третьего и второго порядков. В этом случае K(f) перемножаются, и получается общая АЧХ. От перестановки каскадов АФ общая АЧХ не меняется. В качестве примера приведем схему фильтра пятого порядка, рис.6.
Рис. 6. Активный фильтр НЧ пятого порядка
25. Полосовые и заграждающие аф
Полосовые фильтры могут быть построены с использованием двухзвенного RC-фильтра ФНЧ и ФВЧ, рис.7.
Рис. 7. Полосовой АФ второго порядка и его АЧХ
Рассмотрим аппроксимированную АЧХ
;
,
обозначив через 1=R1C1 и 2=R2C2
,
Из этого выражения можно найти частоты нулей. При ω1/1
;
; при
ω21/2 ω2
=1/R1C2.
Частоты среза определяются
;
Для реализации полосовых АФ широкое применение находят двойные Т-фильтры, т.е. 2Т-фильтры, рис.8.
Рис. 8. Полосовой АФ с 2Т - фильтром в цепи ООС и его АЧХ
В этой схеме 2Т-фильтр включен в цепь ООС. Следовательно, при 100% ООС на всех частотах кроме f0 , Uвых полностью поступает на инвертирующий ход, вследствие чего это устройство работает как повторитель напряжения (К=1; КдБ=0), так цепь ООС преобразовывает заграждающий фильтр в полосовой.
На квазирезонансной частоте f0 =1/(1/2RC) отсутствует ООС по цепи 2Т-фильтра, ООС возникает через делитель R1R2. Отношением этих резисторов определяется К0. В результате имеем резонансную характеристику, приведенную на рис.8.
Для построения заграждающего (режекторного) АФ 2Т-фильтр включают в цепь межкаскадной связи, рис.9.
Рис.9. Режекторный активный фильтр и его АЧХ
В обеих схемах эквивалентная добротность АФ будет определяться выбором величины Ко=1+R2/R1. Квазирезонансная частота определяется элементами 2Т-фильтра (рис.9).
26. Общие сведения о регулировках тембра
Для высококачественного воспроизведения различных передач или записей необходимо регулировать частотную характеристику УНЧ, т.е. подстроить АЧХ усилителя под частотный спектр прослушиваемого сигнала. Это осуществляют при помощи регулятора тембра, представляющего собой активный фильтр на основе ОУ.
Заметное на слух изменение тембра происходит, если частотная характеристика K(f) изменяется не менее чем в 2 раза, т.е. на 6 дБ. Для изменения тембра звучания в широких пределах регуляторы тембра должны обеспечивать изменение усиления не менее чем на ±20 дБ. В современной высококачественной аппаратуре применяются довольно сложные устройства регуляторов тембра с использованием активных фильтров.