
- •1 Классификация усилительных устройств.
- •2. Основные технические показатели и характеристики усилителя.
- •4. Апериодические усилительные каскады в режиме малого сигнала
- •5. Типы усилителей.
- •6. Усилители с rс-связями.
- •7. Усилители постоянного тока.
- •8. Работа транзисторного усилительного каскада на высоких частотах.
- •11. Общие сведения и принципы построения импульсных усилителей.
- •1. Общие сведения и принципы построения импульсных усилителей
- •12. Анализ импульсного усилителя в области малых времен.
- •13. Анализ импульсного усилителя в области больших времен.
- •14. Общие сведения об операционных усилителях.
- •2 Общие сведения об операционных усилителях
- •15. Основные характеристики оу.
- •17. Свойства операционного усилителя.
- •19. Коррекция частотной характеристики оу.
- •20. Устройства перемножения и деления сигналов.
- •21. Общие сведения об активных фильтрах.
- •22. Пассивные rс – фильтры.
- •23. Реализация активных фильтров.
- •24. Активные фильтры высокого порядка.
- •25. Полосовые и заграждающие аф
- •26. Общие сведения о регулировках тембра
- •27. Принцип регулировки тембра на основе аф
- •28. Регулятор тембра на основе аф.
- •29. Математические модели аналоговой радиоэлектронной системы (рэс).
- •30. Математические модели логических схем цифровой рэс.
- •32. Информационные технологии схемотехнического моделирования аналого-цифровых устройств.
- •34. Общая характеристика задач автоматизации конструкторского проектирования рэс
- •35. Электронные коммутаторы
- •17.5.1. Статические характеристики.
- •17.5.2. Динамические характеристики.
- •17.5.3. Эксплуатационные параметры.
- •17.6.1. Влияние нелинейности аналоговых коммутаторов на искажения передаваемых
- •17.6.2. Защита коммутаторов от перенапряжений.
- •17.7.1. Схемы устройств выборки хранения.
- •17.7.2. Основные характеристики увх.
- •17.7.3. Применение увх.
- •13.1. Общие сведения о компараторах
- •13.2. Аналоговый интегральный компаратор
- •13.2.1. Принципы построения интегральных компараторов
- •13.2.2. Компараторы с однополярным питанием
- •13.2.3. Скоростные компараторы
- •13.3. Применение компараторов
- •13.3.1. Двухпороговый компаратор
- •13.3.2. Детектор пересечения нуля
- •13.3.3. Сравнение напряжений противоположной полярности
- •46. Применение цап.
- •9.8.1. Системы сбора данных
- •9.8.2. Кодеки
- •9.8.3. Измерение энергии
- •9.8.4. Управление двигателями переменного тока
20. Устройства перемножения и деления сигналов.
21. Общие сведения об активных фильтрах.
Для получения избирательных характеристик в обычной схемотехнике широко используются LС - фильтры. Однако в интегральной схемотехнике индуктивности трудно реализуемы.
Поэтому в интегральной схемотехнике широкое применение находят активные фильтры, представляющие собой пассивные RС - фильтры, включенные в цепи инвертирующих и неинвертирующих усилителей. Другими словами, активные фильтры - это усилители на основе ОУ в сочетании с пассивными RС - фильтрами. Активные фильтры (АФ) находят самое широкое применение в качестве УВЧ, УПЧ, регуляторов тембров и т.д. Избирательная АЧХ АФ реализуется благодаря применению RС - пассивных фильтров. Следовательно, для анализа АФ необходимо знать характеристики пассивных фильтров.
К преимуществам активных фильтров относятся:
- способность усиливать сигнал, лежащий в полосе их пропускания;
- возможность отказаться от применения таких нетехнологичных элементов, как индуктивности, использование которых несовместимо с методами интегральной технологии;
- легкость настройки;
- малые масса и объем, которые слабо зависят от полосы пропускания, что особенно важно при разработке устройств, работающих в низкочастотной области;
- простота каскадного включения при построении фильтров высоких порядков.
Недостатки:
- невозможность использования в силовых цепях, например в качестве фильтров выпрямителей;
- необходимость источника, предназначенного для питания усилителя;
- ограниченный частотный диапазон, определяемый собственными частотными свойствами используемых усилителей.
Несмотря на перечисленные недостатки, активные фильтры находят широкое практическое применение.
22. Пассивные rс – фильтры.
Различают: фильтры нижних частот (ФНЧ), полоса пропускания которых располагается в области нижних частот; фильтры высоких частот (ФВЧ), пропускающие сигналы высоких частот; полосовые и заграждающие (режекторные фильтры).
Рассмотрим схему ФНЧ, рис. 1a.
Рис.1. ФНЧ и его передаточная характеристика (АЧХ)
Комплексный коэффициент передачи этого RC-фильтра определяется:
K(jω)=Uвых/Uвх=1/(1+jωRC).
Передаточная характеристика ФНЧ имеет выражение:
(1)
где fc - частота среза, равная 1/2RC.
В соответствии с выражением (1) построим передаточную характеристику ФНЧ, рис. 1,б.
При частотах f<<fc f/fc<<1; K(f)=1 KдБ=0,
При частотах f>>fc f/fc >>1; K(f)=fc/f.
Полоса пропускания фильтра определяется частотой среза. При дальнейшем увеличение частоты имеет место затухание сигнала, т.е. спад частотной характеристики 20 дБ/дек. Если ФНЧ имеет несколько звеньев, то спад АЧХ равен n 20 дБ/дек.
Рассмотрим принципиальную схему ФВЧ, рис. 2.
Рис.2. ФВЧ и его передаточная характеристика (АЧХ)
Передаточная характеристика ФВЧ определяется выражением
В области низких частот, где при f<<fс fс/f<<1 K(ω)=ωRC; K(f)=f/fc;
при f >> fc fc/f >>1 K(ω)=1; KдБ=0 дБ.
Для построения полосовых и заграждающих АФ широкое применение находит 2Т фильтр, рис. 3.
Рис.3. 2Т-фильтр и его передаточная характеристика
2Т фильтр пропускает все частоты с коэффициентом передачи К=1, кроме квазирезонансной. На квазирезонансной частоте f0=1/2RC коэффициент передачи равен нулю.