
- •1. Основные понятия теории управления техническими системами
- •1.1. Цели, принципы управления, виды систем управления, основные определения, примеры
- •1.2. Структура систем управления: простые и многомерные системы
- •1.3. Основные законы управления
- •1.4. Классификация систем автоматического управления
- •1.4.1. Классификация по виду математического описания
- •1.4.2. Классификация по характеру передаваемых сигналов
- •1.4.3. Классификация по характеру управления
- •2. Математическое описание систем автоматического управления (регулирования)
- •2.1. Получение уравнений динамики системы. Статическая характеристика. Уравнение динамики сау (сар) в отклонениях
- •2.2. Линеаризация уравнений динамики сау (сар)
- •2.3. Классический способ решения уравнений динамики
- •2.4 . Основные виды входных воздействий
- •2.4.1. Единичное ступенчатое воздействие
- •2.4.2. Единичное импульсное воздействие: - функция Дирака
- •Единичное гармоническое воздействие
- •Линейное воздействие
- •2.5. Основные положения и свойства интегральных преобразований Лапласа
- •2.5.1. Использование преобразования Лапласа для операции дифференцирования
- •2.8 Некоторые способы нахождения оригинала по известному изображению
- •2.9. Использование обратных преобразований Лапласа для решения уравнений динамики сар (звена).
- •2.10. Весовая и переходная функции звена (системы).
- •2.11. Определение переходного процесса в системе (сар) (звене) через весовую и переходную функции.
- •2.12. Mетод переменных состояния.
- •2.12. Переход от описания переменных «вход-выход» к переменным состояния и обратно
- •2.12.1. Правая часть содержит только b0 u(t)
- •2.12.2. Правая часть общего вида
- •2.12.3. Обратная задача
- •2.13. Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности. Вывод передаточной функции, переходной и весовой функций.
- •3. Частотные характеристики звеньев и систем автоматического управления (регулирования)
- •3.1. Амплитудно-фазовая частотная характеристика: годограф афчх, лах, фчх
- •3.2. Типовые звенья систем автоматического управления (регулирования). Классификация типовых звеньев. Простейшие типовые звенья.
- •3.2.1. Идеальное усилительное звено
- •3.2.2. Идеальное дифференцирующее звено
- •3.2.3. Идеальное интегрирующее звено
- •3.3. Апериодическое звено 1 – го порядка (инерционное звено)
- •3.4. Апериодическое звено 2−го порядка
- •3.5 Колебательное звено
- •4. Структурные преобразования
- •4.1. Замена цепи из последовательно параллельно соединенных звеньев
- •4.1.1. Замена цепи последовательно соединенных звеньев эквивалентным звеном
- •Замена цепи из параллельно соединенных звеньев эквивалентным звеном
- •4.2 Цепь с местной обратной связью
- •4.2.1. Замена звена с местной обратной связью на единичную
- •4.3. Перенос места обратной связи “вперед” или “назад”
- •4.4 Перенос точек суммирования “вперед” или “назад”
- •4.5. Перенос точек ветвления сигнала “вперед” или “назад”
- •5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (сар)
- •5.1. Главная передаточная функция. Передаточные функции по возмущающему воздействию и для ошибки (рассогласования)
- •Уравнения динамики замкнутой сар.
- •5.3 Частотные характеристики замкнутой сар.
- •6.5. Частотный критерий Найквиста.
1.4.2. Классификация по характеру передаваемых сигналов
По характеру передаваемых сигналов системы автоматического управления (или регулирования) подразделяются:
- непрерывные системы (системы непрерывного действия);
- релейные системы (системы релейного действия);
- системы дискретного действия (импульсные и цифровые).
Системой непрерывного действия называется такая САУ, в каждом из звеньев которой непрерывному изменению входного сигнала во времени соответствует непрерывное изменение выходного сигнала, при этом закон изменения выходного сигнала может быть произвольным. Чтобы САУ была непрерывной, необходимо, чтобы статические характеристики всех звеньев были непрерывными.
===>
Рис. 1.10
Рис.
1.11
Системой релейного действия называется САУ, в которой хотя бы в одном звене при непрерывном изменении входной величины выходная величина в некоторые моменты процесса управления меняется “скачком” в зависимости от величины входного сигнала. Статическая характеристика такого звена имеет точки разрыва или излома с разрывом.
Рис. 1.12 – Примеры релейных статических характеристик
Системой дискретного действия называется система, в которой хотя бы в одном звене при непрерывном изменении входной величины выходная величина имеет вид отдельных импульсов, появляющиеся через некоторый промежуток времени.
Звено, преобразующее непрерывный сигнал в дискретный сигнал, называется импульсным. Подобный вид передаваемых сигналов имеет место в САУ с ЦЭВМ.
Примечание. Аббревиатура ЦЭВМ расшифровывается как цифровые электронно-вычислительные машины.
Наиболее часто реализуются следующие методы (алгоритмы) преобразования непрерывного входного сигнала в импульсный выходной сигнал:
амплитудно-импульсная модуляция (АИМ);
широтно-импульсная модуляция (ШИМ).
На рис. 1.13 представлена графическая иллюстрация алгоритма амплитудно-импульсной модуляции (АИМ). В верхней части рис. 1.13 представлена временная зависимость x(t) - сигнала на входе в импульсное звено. Выходной сигнал импульсного блока (звена) y(t) – последовательность прямоугольных импульсов, появляющихся с постоянным периодом квантования t (см. нижнюю часть рис. 1.13). Длительность импульсов – одинакова и равна . Амплитуда импульса на выходе блока пропорциональна соответствующей величине непрерывного сигнала x(t) на входе данного блока.
Рис. 1.13 – Реализация амплитудно-импульсной модуляции
Данный метод импульсной модуляции был весьма распространен в электронно-измерительной аппаратуре систем управления и защиты (СУЗ) ядерных энергетических установок (ЯЭУ) в 70-х…80-х годах прошлого столетия.
На рис. 1.14 представлена графическая иллюстрация алгоритма широтно-импульсной модуляции (ШИМ). В верхней части рис. 1.14 представлена временная зависимость x(t) - сигнала на входе в импульсное звено. Выходной сигнал импульсного блока (звена) y(t) – последовательность прямоугольных импульсов, появляющихся с постоянным периодом квантования t (см. нижнюю часть рис. 1.14). Амплитуда всех импульсов – одинакова. Длительность импульса на выходе блока пропорциональна соответствующей величине непрерывного сигнала x(t) на входе импульсного блока.
Рис. 1.14 – Реализация широтно-импульсной модуляции
Данный метод импульсной модуляции в настоящее время является наиболее распространенным в электронно-измерительной аппаратуре систем управления и защиты (СУЗ) ядерных энергетических установок (ЯЭУ) и САУ других технических систем.
Завершая данный подраздел, необходимо заметить, что если характерные постоянные времени в других звеньях САУ (САР) существенно больше t (на порядки), то импульсная система может считаться непрерывной системой автоматического управления (при использовании как АИМ, так и ШИМ).