
- •1. Основные понятия теории управления техническими системами
- •1.1. Цели, принципы управления, виды систем управления, основные определения, примеры
- •1.2. Структура систем управления: простые и многомерные системы
- •1.3. Основные законы управления
- •1.4. Классификация систем автоматического управления
- •1.4.1. Классификация по виду математического описания
- •1.4.2. Классификация по характеру передаваемых сигналов
- •1.4.3. Классификация по характеру управления
- •2. Математическое описание систем автоматического управления (регулирования)
- •2.1. Получение уравнений динамики системы. Статическая характеристика. Уравнение динамики сау (сар) в отклонениях
- •2.2. Линеаризация уравнений динамики сау (сар)
- •2.3. Классический способ решения уравнений динамики
- •2.4 . Основные виды входных воздействий
- •2.4.1. Единичное ступенчатое воздействие
- •2.4.2. Единичное импульсное воздействие: - функция Дирака
- •Единичное гармоническое воздействие
- •Линейное воздействие
- •2.5. Основные положения и свойства интегральных преобразований Лапласа
- •2.5.1. Использование преобразования Лапласа для операции дифференцирования
- •2.8 Некоторые способы нахождения оригинала по известному изображению
- •2.9. Использование обратных преобразований Лапласа для решения уравнений динамики сар (звена).
- •2.10. Весовая и переходная функции звена (системы).
- •2.11. Определение переходного процесса в системе (сар) (звене) через весовую и переходную функции.
- •2.12. Mетод переменных состояния.
- •2.12. Переход от описания переменных «вход-выход» к переменным состояния и обратно
- •2.12.1. Правая часть содержит только b0 u(t)
- •2.12.2. Правая часть общего вида
- •2.12.3. Обратная задача
- •2.13. Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности. Вывод передаточной функции, переходной и весовой функций.
- •3. Частотные характеристики звеньев и систем автоматического управления (регулирования)
- •3.1. Амплитудно-фазовая частотная характеристика: годограф афчх, лах, фчх
- •3.2. Типовые звенья систем автоматического управления (регулирования). Классификация типовых звеньев. Простейшие типовые звенья.
- •3.2.1. Идеальное усилительное звено
- •3.2.2. Идеальное дифференцирующее звено
- •3.2.3. Идеальное интегрирующее звено
- •3.3. Апериодическое звено 1 – го порядка (инерционное звено)
- •3.4. Апериодическое звено 2−го порядка
- •3.5 Колебательное звено
- •4. Структурные преобразования
- •4.1. Замена цепи из последовательно параллельно соединенных звеньев
- •4.1.1. Замена цепи последовательно соединенных звеньев эквивалентным звеном
- •Замена цепи из параллельно соединенных звеньев эквивалентным звеном
- •4.2 Цепь с местной обратной связью
- •4.2.1. Замена звена с местной обратной связью на единичную
- •4.3. Перенос места обратной связи “вперед” или “назад”
- •4.4 Перенос точек суммирования “вперед” или “назад”
- •4.5. Перенос точек ветвления сигнала “вперед” или “назад”
- •5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (сар)
- •5.1. Главная передаточная функция. Передаточные функции по возмущающему воздействию и для ошибки (рассогласования)
- •Уравнения динамики замкнутой сар.
- •5.3 Частотные характеристики замкнутой сар.
- •6.5. Частотный критерий Найквиста.
1.4. Классификация систем автоматического управления
1.4.1. Классификация по виду математического описания
По виду математического описания (уравнений динамики и статики) системы автоматического управления (САУ) подразделяются на линейные и нелинейные системы (САУ или САР).
Каждый “подкласс” (линейных и нелинейных) подразделяется на еще ряд “подклассов”. Например, линейные САУ (САР) имеют различия по виду математического описания.
Поскольку в этом семестре будут рассматриваться динамические свойства только линейных систем автоматического управления (регулирования), то ниже приведем классификацию по виду математического описания для линейных САУ (САР):
1) Линейные системы автоматического управления, описываемые в переменных «вход-выход» обыкновенными дифференциальными уравнениями (ОДУ) с постоянными коэффициентами:
(1.4.1)
где x(t) – входное воздействие; y(t) – выходное воздействие (регулируемая величина).
Если использовать операторную («компактную») форму записи линейного ОДУ, то уравнение (1.4.1) можно представить в следующем виде:
,
(1.4.2)
где p = d/dt - оператор дифференцирования; L(p), N(p) - соответствующие линейные дифференциальные операторы, которые равны:
(1.4.2.а)
(1.4.2.б)
2) Линейные системы автоматического управления, описываемые линейными обыкновенными дифференциальными уравнениями (ОДУ) с переменными (во времени) коэффициентами:
(1.4.3)
В общем случае такие системы можно отнести и к классу нелинейных САУ (САР).
3) Линейные системы автоматического управления, описываемые линейными разностными уравнениями:
(1.4.4)
где f(…) – линейная функция аргументов; k = 1, 2, 3… - целые числа; t – интервал квантования (интервал дискретизации).
Уравнение (1.4.4) можно представить в «компактной» форме записи
(1.4.5)
Обычно такое описание линейных САУ (САР) используется в цифровых системах управления (с использованием ЭВМ).
4) Линейные системы автоматического управления с запаздыванием:
,
(1.4.6)
где L(p), N(p) - линейные дифференциальные операторы; - время запаздывания или постоянная запаздывания.
Если операторы L(p) и N(p) вырождаются (L(p) = 1; N(p) = 1), то уравнение (1.4.6) соответствует математическому описанию динамики звена идеального запаздывания:
а графическая иллюстрация его свойств представлена на рис. 1.8.
Рис. 1.8
5) Линейные системы автоматического управления, описываемые линейными дифференциальными уравнения в частных производных. Нередко такие САУ называют распределенными системами управления. «Абстрактный» пример такого описания:
Система
уравнений (1.4.7) описывает динамику
линейно распределенной САУ, т.е.
регулируемая величина зависит не только
от времени, но и от одной пространственной
координаты.
Если система управления представляет собой «пространственный» объект, то
,
(1.4.8)
где
зависит от времени и пространственных
координат, определяемых радиусом-вектором
6) САУ, описываемые системами ОДУ, или системами разностных уравнений, или системами уравнений в частных производных и так далее…
Аналогичную классификацию можно предложить и для нелинейных САУ (САР)…
Если система уравнений линейна, то необходимы:
линейность статической характеристики САУ;
линейность уравнения динамики, т.е. переменные в уравнение динамики входят только в линейной комбинации.
Статической характеристикой называется зависимость выхода от величины входного воздействия в установившемся режиме (когда все переходные процессы затухли).
Для систем, описываемых линейными обыкновенными дифференциальными уравнениями с постоянными коэффициентами статическая характеристика получается из уравнения динамики (1.4.1) приравниванием нулю всех нестационарных членов
На рис.1.9 представлены примеры линейной и нелинейных статических характеристик систем автоматического управления (регулирования).
Рис. 1.9
Нелинейность
членов, содержащих производные по
времени в уравнениях динамики, может
возникнуть при использовании нелинейных
математических операций (*, /,
,
,
sin,
ln
и т.д.). Например, рассматривая
уравнение динамики некоторой «абстрактной»
САУ
отметим,
что в этом уравнении при линейной
статической характеристике (
)
второе и третье слагаемые (динамические
члены) в левой части уравнения - нелинейные,
поэтому САУ, описываемая подобным
уравнением, является нелинейной в
динамическом плане.