
- •Битумы .Свойства битумов ( физические ,физико-химические ,реологические , химические ,физико-механические)
- •Производство и применение битумов. Состав и строение
- •Органические вяжущие вещества . Основные группы
- •Получение нефтяных битумов . Применение
- •Природные битумы . Применение
- •Асфальтобетон. Сырье . Производство и применение
- •Коррозия цементного камня. Физическая коррозия . Меры защиты
- •Коррозия цементного камня. Химическая коррозия . Меры защиты
- •Коррозия цементного камня. Электрохимическая и биологическая коррозия. Меры защиты
- •1. Эксплуатационно-профилактические:
- •2. Конструктивные:
- •3. Строительно-технологические:
- •Коррозия цементного камня . Коррозия выщелачивания. Меры защиты
- •Коррозия цементного камня . Магнезиальная коррозия. Меры защиты
- •Коррозия цементного камня . Углекислотная коррозия. Меры защиты
- •Коррозия цементного камня. Сульфатная коррозия. Меры защиты
- •Коррозия цементного камня. Коррозия первого вида . Меры защиты
- •Коррозия цементного камня. Коррозия второго вида. Меры защиты
- •Коррозия цементного камня. Коррозия третьего вида. Меры защиты
- •Бетон . Основные свойства тяжелого бетона
- •Состав и свойства бетонной смеси
- •Основной закон прочности бетона. Факторы, по которым определяют прочность бетона .
- •От чего зависит прочность цементного камня
- •Бетон . Прочность . Формула Боломея — Скрамтаева . Что такое марка бетона
- •Какими показателями характеризуется структура заполнителя.
- •Каким требованиям должны отвечать заполнители для бетонов и растворов
- •Мелкий заполнитель (песок). Классификация .По каким показателям определяется модуль крупности мелкого заполнителя .
- •Крупные заполнители . Классификация . По каким показателями определяется марка заполнителя .
- •Пористые заполнители для легких бетонов (керамзит , шлаковую пемзу, аглопорит и перлит ).
- •Строительные растворы. Классификация и применение .
- •Растворная смесь. Состав . Свойства .
- •Специальные растворы .
- •Материалы для изготовления растворных смесей . Их свойства
- •Сухие смеси . Материалы применяемые для сухих смесей
- •Определение зернового состава и модуля крупности заполнителя
- •Влияние заполнителя на свойства бетона
- •Сырье для производства силикатного кирпича . Требования к сырью
- •Способы производства силикатного кирпича . Недостатки и преимущества .
- •Углеродистые стали ( влияние фосфора и серы на качество стали ,маркировка — Ст2).
- •Стали повышенной обрабатываемости (автоматные)
- •Маркировка
- •Легированные стали (влияние легирующих элементов — хрома, никеля, вольфрама и др. Маркировка — 12х2н4а).
- •Маркировка
- •Стали конструкционные теплоустойчивые
- •Стали конструкционные подшипниковые
- •Маркировка
- •Стали конструкционные рессорно-пружинные
- •Определение твердости металлов по Бринеллю , Роквеллу , Виккереу. Преимущества и недостатки )
- •Черные и цветные металлы , применяемые в строительстве
- •Керамический кирпич . Полусухой способ производства , сырье . Применение
- •Керамический кирпич . Пластический способ производства , сырье. Применение
- •Номенклатура керамических изделий . Свойства эксплуатационно-технические и эстетические характеристики керамических материалов .
- •Перечислить разновидности керамического кирпича , укажите требования к сырью для его производства .
- •Какие разновидности облицовочной керамики применяют в строительстве и какие требования предъявляют к исходной глине
- •Силикатные изделия : их виды , основные технологии , свойства и применение.
- •Свойства строительных материалов
- •Физические свойства строительных материалов
- •Механические свойства строительных материалов
- •Химические свойства строительных материалов
- •Технологические свойства строительных металлов
- •Уровни строения материалов . Методы оценки структурных характеристик
- •Классификация горных пород
- •Изверженные породы
- •Осадочные породы
- •Метаморфические породы
- •Основные технологии горных пород. Виды и способы обработки горных пород
- •Номенклатура материалов из природного камня
- •Способы защиты каменных материалов от разрушения . Минеральные вяжущие вещества . Виды .
- •Основы производства минеральных вяжущих. Сырье
- •Гидрофизические свойства строительных материалов. Как изменяются свойства материалов при увлажнение
- •Классификация минеральных вяжущих . Применение . Воздушные вяжущие вещества
- •Как определяется марка портландцемента . Дать определение
- •По каким показателям определяется сорт извести. Применение извести
- •Основные технологические операции при изготовление материалов на основе минеральных вяжущих . Номенклатура .
- •Портландцемент. Основные производства . Сырье
- •Виды гидравлического вяжущего . Применение
- •Основные технологии производства изделий из гидравлического вяжущего.
Коррозия цементного камня . Коррозия выщелачивания. Меры защиты
Она представляет из себя: постепенное растворение и вымывание компонентов самого цементного камня из бетонного изделия из-за фильтрации мягкой (пресной) воды через саму толщу бетона. В этом случае, нарушается химическое равновесие между жидкостью в порах и составляющими компонентами цементного камня. Это приводит в итоге к постепенному ослаблению, влияющей на механическую прочность и ведущей к разрушению бетонной/железобетонной конструкции. Характерным внешним признаком этого вида коррозии является появление белого налёта на стенах бетонных сооружений, в местах выхода воды при фильтрации
Коррозия цементного камня . Магнезиальная коррозия. Меры защиты
Магнезиальная коррозия наступает при взаимодействии на гид-роксид кальция магнезиальных солей, которые встречаются в растворенном виде в грунтовых водах и всегда содержатся в большом количестве в морской воде. Содержание солей в воде мирового океана составляет (г/л): NaCl - 27,2; MgCl2 - 3,8; MgS04 - 1,7; CaS04 - 1,2. Разрушение цементного камня вследствие реакции обмена протекает по следующим формулам:
Са(ОН)2 + MgCl2 = СаС12 + Mg(OH)2,
Са(ОН)2 + MgS04 + 2Н20 = CaS04-2H20 + Mg(OH)2.
В результате этих химических реакций образуется растворимая соль (хлористый кальций или двуводный сульфат кальция), вымываемая из бетона.
Гидроксид магния представляет бессвязную массу, не растворимую в воде, поэтому реакция идет до полного израсходования гидроксид кальция.
Коррозия цементного камня . Углекислотная коррозия. Меры защиты
глекислая коррозия развивается при действии на цементный камень и бетон воды, содержащей углекислый газ СО?. При этом вначале идет реакция между Са(ОН)2 цемента и углекислотой с образованием малорастворимого СаС03 по схеме: Са(ОН)2 + С02+Н20 = = СаСОз + 2Н20. Дальнейшее воздействие H2CQ3 на цемент приводит, однако, к образованию более растворимого гидрокарбоната: СаС03 + Н2С03ч=*Са(НС03)2. В этой обратимой реакции следует различать углекислоту, связанную в гидрокарбонате Са(НС03)2. Для предотвращения его разложения и обратного перехода в СаСОз необходимо присутствие в растворе определенного количества так называемой «равновесной» неагрессивной углекислоты. Появление же в растворе «сверхравновесного» количества углекислоты вызывает растворение новых порций СаСОз и образование Ca(HCQ3h. Эта избыточная углекислота называется агрессивной. Углекислая коррозия воздействует на бетон тем слабее, чем больше в водном растворе гидрокарбонатов кальция и магния.
Коррозия цементного камня. Сульфатная коррозия. Меры защиты
Вв разновидность сульфатной. Она возникает при действии на портландцемент-иый камень и бетон вод, содержащих более 300 мг/л сульфатных ионов БОГ" и ионов хлора менее 1000 мг/л. При большем их содержании в растворах эта коррозия переходит в сульфоалюмииатно-гипсовую. Изготовление бетона на сульфатостойкбм портландцементе резко повышает его стойкость против действия этих веществ. Коррозия бетонов под действием природных или промышленных вод, содержащих то или иное количество таких солей, как CaS04, Na2S04, MgS04, наблюдается достаточно часто. Морская вода, содержащая ряд хлористых и сернокислых солей, также вызывает сульфатную и магнезиальную коррозию. Среднее содержание различных солей в воде «мирового океана» составляет (по Дитмару): NaCI —27,2; MgCI2—3,8; MgSQ4—1,7; CaS04—1,2 г/л. Сульфоалюминатная коррозия является следствием взаимодействия гипса с высокоосновными алюминатами кальция, содержащимися в цементном камне, по схеме ЗСаО - А1203 • 6H20 + 3CaS04 + 25Н20 = ЗСаО-А1203-.3CaS04-31H20. Образование малорастворимой трехсульфатной формы гидросульфоалюмината кальция (эттрингита) из твердого С3АН6 и растворенного в воде гипса сопровож,-. дается' увеличением твердой фазы (по сравнению с С3АН6) примерно в 4,76 раза. Это вызывает возникновение сильных напряжений в цементном камне, приводящих к нарушению его структуры, деформациям и снижению прочности. Если в агрессивном растворе содержится сульфат натрия, то вначале с ним реагирует Са(ОН)2 по схеме Ca(OH)2 + Na2S04^CaS04+2NaOH. В последующем идет образование эттрингита из гипса и алюмината кальция. Следует обратить внимание на то, что эттрингит образуется только при наличии четырех- или трехкальцие-вого алюмината, устойчивых при концентрациях гидроксида кальция в окружающем водном растворе соответственно не ниже 1,08 и 0,4—0,46 г/л (считая на СаО).При более низких концентрациях Са(ОН)2 в растворе они разлагаются, образуя двухкальциевый гидроалюминат, образование эттрингита исключается. На этом основано защитное действие активных (пуццолановых) минеральных добавок, которые вводят в портландцемеиты для предотвращения сульфоалюмииатной коррозии. Активный кремнезем добавок вступает в реакцию с гидрокси-дом кальция, выделяющимся из C3S и отчасти из C2S во время их взаимодействия с водой при твердении цемента, образуя CSH (В) и снижая концентрацию СаО от 1,2—1,3 до 0,06—0,08 г/л, поэтому растворы CaS04, N2SO4 и MgS04 с концентрацией этих солей в воде примерно до 0,5 % для бетонов на пуццолановых портланд-цементах не опасны. На степень агрессивности этих сульфатов влияет присутствие в растворе NaCl, СаС12 и др. Они уменьшают возможность образования эттрингита. Водные растворы с концентрацией MgS04 более 0,5 % разрушают бетоны даже на пуццолановых портландцементах вследствие чисто магнезиальной коррозии, о чем сказано ниже. При действии на бетон водных растворов с большим содержанием в них Na2S04 и K2SO4 наступает преимущественно гипсовая коррозия, причем бетон разрушается вследствие отложения двуводного гипса в порах и капиллярах цементного камня, что приводит к изменению его структуры и разрушению (III вид коррозии по Москвину).