
- •А.Н.Геннадиев, м.А. Глазовская География почв с основами почвоведения
- •Введение почвоведение как отрасль естествознания: история, предмет и задачи
- •Часть I факторы и сущность почвообразования
- •Глава 1
- •Компоненты географической среды как факторы почвообразования
- •Главные горные породы магматического происхождения
- •Основные функции биологического фактора в почвообразовании
- •Лучистая энергия Солнца, атмосферные осадки и воздух как составляющие климатического фактора почвообразования
- •Температура почв на глубине 0,2 м и приземного слоя воздуха в различных областях (по в.Н, Димо)
- •Рельеф — перераспределитель тепла, влаги и твердых масс. Особенности почв и ландшафтов в зависимости от положения в рельефе
- •Локальные и антропогенные факторы почвообразования
- •Глава 2 значение географических факторов в энергетике почвообразования
- •Количество солнечной энергии, участвующей в почвообразовании
- •Глава 3 вклад географических факторов в материальную основу почвообразования
- •Средний химический состав горных пород в долях массы (по а.П. Виноградову)
- •Средний химический состав живых организмов (по а.П. Виноградову)
- •Средний химический состав приземной атмосферы в долях массы на сухой воздух (по ф. Панету и в. Миртову)
- •Глава 4 участие географических факторов в динамике почвообразования
- •Глава 5 почва - многокомпонентная полифакторная открытая биокосная система
- •Морфологические признаки почв
- •Аналитические исследования почв
- •Часть II состав и свойства твердой, жидкой и газовой фаз почвы
- •Глава 6 происхождение и состав минеральной части почвообразующих пород и почв
- •Минеральный и химический состав магматических и метаморфических пород
- •Средний химический состав главных типов изверженных пород, % (по р.А. Дэли)
- •Минеральный и химический состав осадочных пород
- •Главные типы осадочных пород
- •Устойчивость минералов к процессам выветривания
- •Остаточные коры выветривания и коррелятивные им типы аккумулятивных отложений
- •Глава 7 гранулометрический (механический) состав почвообразующих пород и почв Гранулометрические фракции и методы их определения
- •Классификация гранулометрических элементов почвенной массы (по н.А. Качинскому)
- •Классификация почв и пород по гранулометрическому составу (по н.А. Качинскому)
- •Гранулометрический состав почвы
- •Разделение почв по степени дифференциации профиля
- •Минеральные почвенные горизонты
- •Глава 8 органические и органо-минеральные вещества почв Источники органических веществ в почвах и их химический состав
- •Процессы гумификации
- •Гумус почвы. Состав и свойства
- •Влияние факторов почвообразования на образование и накопление гумуса
- •Органо-минеральные соединения и комплексы в почвах
- •Гумусово-аккумулятивные и гумусово-иллювиальные горизонты почв
- •Глава 9 почвенные коллоиды и поглотительная способность почв
- •Физическая адсорбция
- •Физико-химическая поглотительная способность. Строение почвенных коллоидов
- •Физическое состояние коллоидов и его зависимость от состава дисперсионной среды и поглощенных оснований
- •Почвенный поглощающий комплекс
- •Величина емкости обмена глинистых минералов
- •Физическое состояние почвенного поглощающего комплекса в зависимости от состава поглощенных оснований
- •Глава 10 жидкая фаза почв, почвенные растворы
- •Категории, формы и виды почвенной влаги
- •Глава 11 газовая фаза почв. Состав почвенного воздуха
- •Глава 12 окислительно-восстановительные процессы в почвах
- •Глава 13 структурное состояние и физические свойства почв как трехфазного тела
- •Факторы структурообразования
- •Объемная масса, удельная масса и пористость почв
- •Объемная масса суглинистых и глинистых почв (по н.А. Каминскому)
- •Физико-механические свойства почв
- •Часть III классификация почв и почвенно-географическое районирование. Свойства, генезис и география основных типов почв мира
- •Глава 14
- •Принципы генетической классификации почв, картография почв и почвенно- географическое районирование
- •Таксономические единицы и критерии выделения почв
- •Глава 15 почвы полярных и субполярных областей Выветривание и почвообразование в полярных пустынях
- •Дерновые арктотундровые почвы
- •Тундровые глеевые почвы
- •Дерновые субарктические почвы
- •Болотные почвы
- •Глава 16 почвы бореальных и суббореальных лесных областей
- •Подбуры
- •Подзолы
- •Подзолистые почвы
- •Буроземы (или бурые лесные почвы)
- •Поверхностно-глеево-элювиальные почвы
- •Грунтово-глеево-элювиальные почвы
- •Дерново-карбонатные почвы
- •Глава 17 почвы лесо-лугово-степных и степных суббореальных областей
- •Серые лесные почвы
- •Черноземы
- •Каштановые почвы
- •Глава 18 солончаки, солонцы и солоди
- •Солончаки
- •Типы засоления почв по соотношению ионов
- •Солонцы
- •Глава 19 почвы полупустынь и пустынь
- •Бурые пустынно-степные и серо-бурые пустынные почвы
- •Сероземы
- •Годовое поступление органических остатков и зольных элементов в почвы эфемерово-злаково- кустарничковых пустынных степей (по л.Е. Родину и н.И. Базилевич)
- •Такыры и такыровидные почвы
- •Глава 20 почвы переменно-влажных ксерофитно-лесных и саванновых субтропических и тропических областей
- •Коричневые и красно-коричневые почвы
- •Серо-коричневые почвы
- •Слитоземы (вертисоли)
- •Красные и красно-бурые почвы саванн (ферроземы)
- •Глава 21 почвы влажных лесных субтропических, тропических и экваториальных областей
- •Часть IV общие закономерности географии почв и региональная организация почвенного покрова
- •Глава 22 факторы, определяющие общие закономерности географии почв
- •Биоклиматическая зональность почв
- •Литогенная дифференциация почвенного покрова
- •Топогенно - геохимическая сопряженность почв
- •Миграционная способность химических элементов и их соединений (по б.Б. Полынову)
- •Историко-хронологическое разнообразие почвенного покрова
- •Глава 23 структуры почвенного покрова
- •Микроструктуры и мезоструктуры почвенного покрова
- •Основные морфологические типы мезоструктур почвенного покрова (счетания и мозаики)
- •Региональные особенности горизонтальной биоклиматогенной зональности почв
- •Региональные типы вертикальной (горной) биоклиматогенной зональности почв
- •Глава 24 почвенный покров материков и континентов: основные факторы и особенности его организации Почвенный покров Евразии
- •Почвенный покров Северной Америки
- •Почвенный покров Центральной Америки
- •Почвенный покров Южной Америки
- •Почвенный покров Африки
- •Почвенный покров Австралии
- •Часть V современное состояние, мелиорация и охрана почвенных ресурсов
- •Глава 25
- •Функциональная ценность и структура использования почвенных ресурсов
- •Глава 26 состояние почвенных ресурсов и факторы его изменения
- •Увеличение пахотных земель и урожайности в период 1964—1985 гг. (World resourses)
- •Глава 27 социально-экономические факторы охраны почв и почвоохранная политика в россии
- •Литература
- •Оглавление
Миграционная способность химических элементов и их соединений (по б.Б. Полынову)
|
|
|
|
|
Порядок миграций |
Элементы и их соединения |
Средний состав |
Средний состав |
Относительная |
массивных |
минерального |
подвижность |
||
пород |
остатка вод |
элементов |
||
|
|
|
|
|
IV |
А12O3 |
15,35 |
0,90 |
0,02 |
|
|
7,29 59,09 |
0,40 12,80 |
0,04 0,20 |
III |
Fe2 O3 SiO2 |
|||
|
Са |
3,60 |
14,70 |
3,00 |
II |
Mg |
2,11 |
4,90 |
1,30 |
К |
2,57 |
4,40 |
1,25 |
|
|
Na |
2,97 |
9,50 |
2,40 |
|
|
0,05 0,15 |
6,75 11,60 |
100,00 57,00 |
I |
CI |
|||
|
SO4 |
Таким образом, если из выветривающейся толщи почв или пород за некоторое время будет вынесен весь хлор, она потеряет примерно половину (57 %) от первоначального содержания S04. За это же время будет вынесено всего лишь 2—3 % от первоначального содержания натрия и кальция и около 1,2—1,3 % магния и калия; еще в меньшей степени выветривающаяся толща будет обеднена кремнеземом, а оксиды железа и алюминия практически останутся на месте. Если продолжительность выветривания велика и из толщи вынесены не только хлор и сульфаты, но и весь кальций и натрий, то в ней сохранится еще около 50 % первоначальных запасов калия и магния (так как относительная подвижность этих элементов в два раза меньше). При полном выносе всех оснований вынос кремнезема составляет 15—20 % его исходного содержания, т. е. остаточные продукты выветривания будут обогащены наименее подвижными оксидами железа и алюминия, относительное содержание которых к этому моменту окажется в 1,5—2 раза больше их первоначального содержания.
Следовательно, при длительно идущем процессе выветривания и выносе веществ остающаяся толща последовательно обедняется элементами с высокой миграционной способностью и относительно обогащается менее подвижными. В природе наблюдаются все последовательные стадии остаточной коры выветривания — обломочной, обломочной обызвесткованной, сиаллитной, аллитной (или ферраллитной).
Химические элементы и их соединения, которые выносятся из остаточной зоны выветривания (из геохимически автономных почв), перемещаются с подземными и поверхностными водами на большее или меньшее расстояние от места своего освобождения. Порядок выпадения элементов из растворов и накопления в различных почвах и рыхлых наносах обратный порядку их подвижности, т. е. элементы с наиболее высокой миграционной способностью уносятся наиболее далеко и аккумулируются в более пониженных областях — внутри континентов, в речных дельтах или попадают в моря и океаны. Менее подвижные продукты задерживаются в значительной части по пути, причем чем менее подвижны элементы, тем ближе зона их аккумуляции располагается к области сноса.
В результате в пределах данного водосборного бассейна формируются в соответствии с геоморфологическими условиями последовательно сменяющие одна другую зоны с различными типами геохимических аккумуляций. Они геохимически связаны с областями, где идет формирование остаточных продуктов выветривания и почвообразования того или иного типа.
Аккумуляция вещества в почвах и рыхлых наносах геохимически подчиненных ландшафтов происходит из-за наличия ландшафтно-геохимических барьеров, т. е. зон, где существенно изменяются условия миграции элементов и их соединений, что приводит к понижению их миграционной способности. Выделяются следующие основные группы ландшафтно-геохимических барьеров:
биогеохимические;
физико-химические (окислительные, восстановительные, сульфидные, восстановительные глеевые, сульфатно-карбонатные, щелочные, кислые, испарительные и адсорбционные);
термодинамические;
механические.
Детальный анализ различных типов геохимических барьеров и их сложных сочетаний, которые могут сменять друг друга в почвах и почвенном покрове, проведен Н.С. Касимовым и А.И. Перельманом (1992).
На геохимических барьерах в почвах и корах выветривания зон аккумуляций может накапливаться сиаллитный, карбонатный или хлоридно-сульфатный материал. В аридных областях, где испаряемость превышает количество осадков, широко распространены испарительные барьеры, с которыми связано образование засоленных почв. С испарительным и температурным барьерами связано образование в гидроморфных почвах горизонтов «лугового мергеля» или сцементированных известью плотных горизонтов — хардпэнов. С окислительным барьером связано накопление гидроксидов железа и формирование плотных конкреционных горизонтов в гидроморфных почвах субтропиков и тропиков и ожелезненных лугово- болотных и болотных почв в гумидных областях умеренных поясов. На резко выраженных окислительно-восстановительных барьерах в пределах низменных морских побережий и открытых дельт рек возникают сульфидно-хлоридные аккумуляции.
Почвенный покров ландшафтно-геохимических арен. Геохимически сопряженные почвы располагаются в пределах ландшафтно- геохимических арен. Ландщафтно-геохимические арены — это территории, лежащие на различных гипсометрических уровнях, но находящиеся в общем водосбросном и солесборном бассейне и связанные механическим и химическим стоком в одну общую (наиболее крупную) ландшафтно-литолого-геохимическую территориальную единицу. Протяженность ландшафтно-геохимических арен составляет часто сотни и тысячи километров, а их возраст как геохимически сопряженных территорий измеряется геологическим временем.
При рассмотрении закономерностей геохимической сопряженности почв в пределах арены необходимо принимать во внимание не только водную, но и воздушную миграцию веществ, причем как в твердой, так и в жидкой фазе. Так, развеивание солей с поверхности солончаков и перенос их на большие пространства — весьма широко распространенное явление, вызывающее засоление почв прилегающих повышенных равнин. Особенно отчетливо этот процесс проявляется в случае субаэрального засоления древней сильно выщелоченной коры выветривания на территориях, лежащих вблизи морей или океанов. Большое значение приобретает воздушный перенос солей с акватории на сушу.
Сложность, состав и контрастность почвенно-геохимических зон внутри арен определяются как геоморфологическими, так и биоклиматическими условиями в ее отдельных частях. Наиболее полная и контрастная зональность наблюдается в том случае, если в области формирования гидрохимического стока и распространения автономных почв (элювиальных ландшафтов) климатические условия характеризуются повышенной влажностью, а геохимически подчиненные почвы лежат в понижениях с относительно засушливым климатом. Наименее контрастны арены, находящиеся целиком в условиях влажного или очень сухого климата (см. рис. 6.4).
Почвенно-геохимические катены. Ландшафтно-геохимические арены включают в себя более частные территориальные единицы — геохимические ландшафты. Напомним, что, по Б.Б. Полынову, геохимический ландшафт представляет собой совокупность элементарных ландшафтов (элювиальных, супераквальных, субаквальных), сменяющих друг друга по элементам рельефа от местного водораздела к местной депрессии и связанных друг с другом миграцией веществ. Именно в пределах геохимических ландшафтов формируются ряды почв, связанные между собой боковой ми фацией веществ. Эти парагенетические ассоциации почв называют почвенно- геохимическими сопряжениями или почвенно-геохимическими катенами (рис. 22.2).
Почвенно-геохимические катены весьма разнообразны и тесно связаны со всей совокупностью физико-географических условий. Существенное значение имеет характер выветривания и почвообразования в элювиальных и трансэлювиальных членах геохимически сопряженного ряда почв, так как именно этот фактор обусловливает состав и количество подвижных компонентов, которые могут участвовать в местных миграциях. Большое значение имеет также химический состав наземного растительного опада, потому что в случае поверхностного стока вод в первую очередь выщелачиваются и
Рис. 22.2. Схема элементарных ландшафтов (по Б.Б. Полынову)
перераспределяются в пределах катены те элементы, которые извлекаются из почвы растениями.
Столь же существенное значение имеет тип рельефа, в пределах которого формируется почвенно-геохимическая катена. В условиях молодого аккумулятивного (например, молодой моренной или эолово-аккумулятивной равнины), а также молодого эрозионного рельефа (горные склоны, где преобладает механический снос) почвенно-геохимические катены выражены слабо. Наоборот, на территориях с древним континентальным рельефом они развиты хорошо. Исключение представляют катены, обусловленные дифференциацией легкорастворимых солей, где формирование элювиальных и аккумулятивных членов сопряженного ряда идет очень быстро.
Катены формируются как в пределах литохимически однородных почвообразующих пород, так и в условиях пестрого состава исходных пород. В последнем случае подчиненные члены сопряженного ряда формируются под совокупным влиянием подвижных продуктов выветривания и почвообразования различных пород и особенно тех, продукты выветривания которых обладают наибольшей растворимостью.
Если повышенные элементы рельефа сложены хорошо водопроницаемыми породами и почвами, то на склонах боковой сток отсутствует и все почвы принадлежат к группе геохимически автономных. Связь между почвами повышенных и пониженных участков осуществляется в этом случае через сток фунтовых вод (грунтово-водное сопряжение).
Если же почвообразующие породы и особенно почвы склонов плохо водопроницаемы, то воды стекают по поверхности почвы или над плотными иллювиальными (или постоянно мерзлыми) горизонтами. Этот тип сопряжения почв можно назвать водным поверхностно-почвенным, или водным внутрипочвенным.
На земной поверхности существует большое разнообразие почвенно-геохимических катен, которые характеризуют определенные сочетания биоклиматических, геоморфологических и литологических условий в пределах той или иной территории.
Так, в пределах древнеледниковых равнин Евразии и Северной Америки, сложенных карбонатной мореной или карбонатными покровными суглинками, карбонаты кальция выносятся из почв элювиального ряда (дерново-карбонатных, бурых лесных и дерново-подзолистых остаточно-карбонатных, серых лесных и др.) и накапливаются в почвах депрессий, находящихся под воздействием жестких грунтовых вод. Здесь образуются в условиях супераквального режима перегнойно-карбонатные или черноземовидные луговые почвы со значительным накоплением лугового мергеля, а в случае водозастойного режима — карбонатные торфяно-болотные почвы.
На плоских слабодренированных древнеаллювиальных и древнеозерных равнинах, в областях распространения лесо-лугово-степных ландшафтов (Западная Сибирь, Дальний Восток, Северо-Восточный Китай) в формировании почвенно-геохимических сопряжений участвуют, кроме карбонатов кальция, более легкорастворимые соли: сода, кремнекислый натрий, сульфаты и хлориды натрия, а иногда и магния. Элювиальные и трансэлювиальные члены таких катен могут быть представлены лугово-черноземными солонцеватыми, местами осолоделыми почвами, с небольшим содержанием солей и карбонатным горизонтом. Супераквальные позиции занимают содовые солонцы и солончаки. В замкнутых бессточных впадинах встречаются лугово- и торфяно-болотные слабозасоленные почвы.
Для равнин гумидных бореальных областей (Скандинавия, Карелия) характерны почвенно-геохимические катены, которые можно назвать ферри-ферро-гумусовыми. Молодость территории обусловливает присутствие здесь слаборазвитых почвенно-геохимических сопряжений в элювиальном и трансэлювиальном ландшафтах. Лишь при переходе к нижним частям склонов и заболоченным депрессиям возникают контрастные образования. В ряду транссупераквальных подзолисто- и торфяно-болотных почв, находящихся в условиях восстановительной среды, приобретают подвижность железо и марганец, которые в форме углекислых солей и восстановленных органо-железистых комплексов выносятся в почвы местных депрессий и там, где восстановительный режим сменяется окислительным, выпадают в осадок в виде гидроксидов. Таким образом, формируются болотные и озерные руды.