
- •А.Н.Геннадиев, м.А. Глазовская География почв с основами почвоведения
- •Введение почвоведение как отрасль естествознания: история, предмет и задачи
- •Часть I факторы и сущность почвообразования
- •Глава 1
- •Компоненты географической среды как факторы почвообразования
- •Главные горные породы магматического происхождения
- •Основные функции биологического фактора в почвообразовании
- •Лучистая энергия Солнца, атмосферные осадки и воздух как составляющие климатического фактора почвообразования
- •Температура почв на глубине 0,2 м и приземного слоя воздуха в различных областях (по в.Н, Димо)
- •Рельеф — перераспределитель тепла, влаги и твердых масс. Особенности почв и ландшафтов в зависимости от положения в рельефе
- •Локальные и антропогенные факторы почвообразования
- •Глава 2 значение географических факторов в энергетике почвообразования
- •Количество солнечной энергии, участвующей в почвообразовании
- •Глава 3 вклад географических факторов в материальную основу почвообразования
- •Средний химический состав горных пород в долях массы (по а.П. Виноградову)
- •Средний химический состав живых организмов (по а.П. Виноградову)
- •Средний химический состав приземной атмосферы в долях массы на сухой воздух (по ф. Панету и в. Миртову)
- •Глава 4 участие географических факторов в динамике почвообразования
- •Глава 5 почва - многокомпонентная полифакторная открытая биокосная система
- •Морфологические признаки почв
- •Аналитические исследования почв
- •Часть II состав и свойства твердой, жидкой и газовой фаз почвы
- •Глава 6 происхождение и состав минеральной части почвообразующих пород и почв
- •Минеральный и химический состав магматических и метаморфических пород
- •Средний химический состав главных типов изверженных пород, % (по р.А. Дэли)
- •Минеральный и химический состав осадочных пород
- •Главные типы осадочных пород
- •Устойчивость минералов к процессам выветривания
- •Остаточные коры выветривания и коррелятивные им типы аккумулятивных отложений
- •Глава 7 гранулометрический (механический) состав почвообразующих пород и почв Гранулометрические фракции и методы их определения
- •Классификация гранулометрических элементов почвенной массы (по н.А. Качинскому)
- •Классификация почв и пород по гранулометрическому составу (по н.А. Качинскому)
- •Гранулометрический состав почвы
- •Разделение почв по степени дифференциации профиля
- •Минеральные почвенные горизонты
- •Глава 8 органические и органо-минеральные вещества почв Источники органических веществ в почвах и их химический состав
- •Процессы гумификации
- •Гумус почвы. Состав и свойства
- •Влияние факторов почвообразования на образование и накопление гумуса
- •Органо-минеральные соединения и комплексы в почвах
- •Гумусово-аккумулятивные и гумусово-иллювиальные горизонты почв
- •Глава 9 почвенные коллоиды и поглотительная способность почв
- •Физическая адсорбция
- •Физико-химическая поглотительная способность. Строение почвенных коллоидов
- •Физическое состояние коллоидов и его зависимость от состава дисперсионной среды и поглощенных оснований
- •Почвенный поглощающий комплекс
- •Величина емкости обмена глинистых минералов
- •Физическое состояние почвенного поглощающего комплекса в зависимости от состава поглощенных оснований
- •Глава 10 жидкая фаза почв, почвенные растворы
- •Категории, формы и виды почвенной влаги
- •Глава 11 газовая фаза почв. Состав почвенного воздуха
- •Глава 12 окислительно-восстановительные процессы в почвах
- •Глава 13 структурное состояние и физические свойства почв как трехфазного тела
- •Факторы структурообразования
- •Объемная масса, удельная масса и пористость почв
- •Объемная масса суглинистых и глинистых почв (по н.А. Каминскому)
- •Физико-механические свойства почв
- •Часть III классификация почв и почвенно-географическое районирование. Свойства, генезис и география основных типов почв мира
- •Глава 14
- •Принципы генетической классификации почв, картография почв и почвенно- географическое районирование
- •Таксономические единицы и критерии выделения почв
- •Глава 15 почвы полярных и субполярных областей Выветривание и почвообразование в полярных пустынях
- •Дерновые арктотундровые почвы
- •Тундровые глеевые почвы
- •Дерновые субарктические почвы
- •Болотные почвы
- •Глава 16 почвы бореальных и суббореальных лесных областей
- •Подбуры
- •Подзолы
- •Подзолистые почвы
- •Буроземы (или бурые лесные почвы)
- •Поверхностно-глеево-элювиальные почвы
- •Грунтово-глеево-элювиальные почвы
- •Дерново-карбонатные почвы
- •Глава 17 почвы лесо-лугово-степных и степных суббореальных областей
- •Серые лесные почвы
- •Черноземы
- •Каштановые почвы
- •Глава 18 солончаки, солонцы и солоди
- •Солончаки
- •Типы засоления почв по соотношению ионов
- •Солонцы
- •Глава 19 почвы полупустынь и пустынь
- •Бурые пустынно-степные и серо-бурые пустынные почвы
- •Сероземы
- •Годовое поступление органических остатков и зольных элементов в почвы эфемерово-злаково- кустарничковых пустынных степей (по л.Е. Родину и н.И. Базилевич)
- •Такыры и такыровидные почвы
- •Глава 20 почвы переменно-влажных ксерофитно-лесных и саванновых субтропических и тропических областей
- •Коричневые и красно-коричневые почвы
- •Серо-коричневые почвы
- •Слитоземы (вертисоли)
- •Красные и красно-бурые почвы саванн (ферроземы)
- •Глава 21 почвы влажных лесных субтропических, тропических и экваториальных областей
- •Часть IV общие закономерности географии почв и региональная организация почвенного покрова
- •Глава 22 факторы, определяющие общие закономерности географии почв
- •Биоклиматическая зональность почв
- •Литогенная дифференциация почвенного покрова
- •Топогенно - геохимическая сопряженность почв
- •Миграционная способность химических элементов и их соединений (по б.Б. Полынову)
- •Историко-хронологическое разнообразие почвенного покрова
- •Глава 23 структуры почвенного покрова
- •Микроструктуры и мезоструктуры почвенного покрова
- •Основные морфологические типы мезоструктур почвенного покрова (счетания и мозаики)
- •Региональные особенности горизонтальной биоклиматогенной зональности почв
- •Региональные типы вертикальной (горной) биоклиматогенной зональности почв
- •Глава 24 почвенный покров материков и континентов: основные факторы и особенности его организации Почвенный покров Евразии
- •Почвенный покров Северной Америки
- •Почвенный покров Центральной Америки
- •Почвенный покров Южной Америки
- •Почвенный покров Африки
- •Почвенный покров Австралии
- •Часть V современное состояние, мелиорация и охрана почвенных ресурсов
- •Глава 25
- •Функциональная ценность и структура использования почвенных ресурсов
- •Глава 26 состояние почвенных ресурсов и факторы его изменения
- •Увеличение пахотных земель и урожайности в период 1964—1985 гг. (World resourses)
- •Глава 27 социально-экономические факторы охраны почв и почвоохранная политика в россии
- •Литература
- •Оглавление
Основные функции биологического фактора в почвообразовании
Деятельность растений, животных и микроорганизмов является неотъемлемой частью процесса формирования почв. Почвы не могут существовать вне биологического воздействия. Многие живые организмы и продукты их функционирования непосредственно входят в состав почвы.
Велика роль в почвообразовании высших зеленых растений, которые являются основными продуцентами и поставщиками органического вещества в почву. Образуясь у поверхности земли в процессе фотосинтеза, растительная масса после отмирания в виде надземных и подземных остатков поступает в почвенную толщу, где подвергается разложению под воздействием различных агентов, главным образом микроорганизмов. Часть растительного опада превращается в простые соединения — углекислоту, воду, оксиды азота, и либо выносится из почвы, либо вовлекается в новые циклы жизнедеятельности биоты. В процессе разложения освобождаются также элементы минерального питания растений (зольные элементы). Другая же часть органических остатков трансформируется в соединения специфической природы — гумусовые вещества, которые накапливаются в почве, придавая ей определенные химические и физические свойства.
В почвенном гумусе аккумулируется энергия, ассимилированная в растениях при фотосинтезе. Гумусовые кислоты, воздействуя на первичные и вторичные минералы почв, вызывают их распад и способствуют образованию органо-минеральных веществ. Благодаря гумусовым соединениям отдельные частицы почвы склеиваются в структурные агрегаты.
Количество и характер надземных и подземных остатков, направленность гумусообразования и свойства гумусовых веществ в значительной мере зависят от типа растительности и гидротермических условий ее произрастания. Различные характеристики биологической продуктивности основных типов растительности приведены в табл. 1.3.
Как видно из табл. 1.3, наибольшая биомасса характерна для лесной растительности (до 4000—5000 ц/га). В саваннах, степях и кустарничковых тундрах эта величина находится в пределах 250—650 ц/га. Минимальная общая биомасса отмечается в полярных и тропических пустынях — менее 50 ц/га. Между различными типами растительности весьма отчетливо проявляется разница в структуре биологической продуктивности. Так, в лесной зоне велика доля назем ной биомассы, значительная часть растительных остатков накапливается в подстилке на поверхности почвы. В степных, тундровых, пустынных фитоценозах, напротив, основное количество биомассы приходится на корневые системы, при их отмирании органическое вещество поступает непосредственно в толщу почвы.
Высшие зеленые растения воздействуют на почву не только посредством отмерших органических остатков. Еще при жизни из них попадают в почву разнообразные органические и минеральные компоненты. Корневые системы растений выделяют в окружающую среду органические кислоты, ионы ОН-, Н+, НС03-, углекислый газ.
Таблица 1.3
Биологическая продуктивность основных типов растительности (по Л.Е. Родину и Н.И. Базилевич)
|
Биомасса, ц/га |
Годовой прирост, ц/га |
Истинный годовой прирост, ц/га |
Лесная подстилка или степной войлок, ц/га |
|||
|
общая |
Зеленая часть |
Многолетняя наземная |
|
|||
Типы растительности |
корни |
||||||
|
|
||||||
Арктические тундры |
60 |
15 |
10 |
35 |
10 |
0,5 |
35 |
Кустарниковая тундра |
280 |
32 |
17 |
231 |
25 |
1 |
835 |
Сосняки северной тундры |
807 |
62 |
567 |
178 |
33 |
- |
462 |
Сосняки южной тайги |
2800 |
140 |
2024 |
635 |
61 |
14 |
448 |
Ельники северной тайги |
1000 |
80 |
700 |
220 |
45 |
10 |
300 |
Ельники южной тайги |
3300 |
165 |
2400 |
735 |
85 |
30 |
350 |
Дубравы |
4000 |
40 |
3000 |
960 |
90 |
25 |
150 |
Степи луговые |
250 |
80 |
0 |
205 |
137 |
- |
120 |
Степи умеренно засушливые |
250 |
45 |
0 |
205 |
112 |
- |
62 |
Степи сухие |
100 |
15 |
0 |
85 |
42 |
- |
15 |
Пустыни полукустарниковые |
43 |
1 |
4 |
38 |
12,2 |
0,2 |
— |
Пустыни эфемерово- полукустарниковые |
125 |
18 |
3 |
104 |
95 |
1 |
— |
Субтропические лиственные леса |
4100 |
120 |
3160 |
820 |
245 |
35 |
100 |
Саванны сухие |
268 |
29 |
126 |
ИЗ |
73 |
5 |
13 |
Саванны |
666 |
83 |
544 |
39 |
120 |
13 |
0,2 |
Влажные тропические леса |
|
|
|
|
325 |
|
|
5000 |
400 |
3700 |
900 |
20 |
0,1 |
Заметное количество химических элементов вымывается атмосферными осадками из живых надземных частей растений (хвои, листьев). В основном это катионы кальция, магния и калия. Есть данные о том, что ежегодно из крон деревьев может вымываться кальция до 10 кг/га и более.
Прижизненные выделения веществ из растений в почву имеют обменную основу. Обогащая почвы теми или иными соединениями, растения через тончайшие корневые волоски поглощают из почвенных растворов эквивалентное количество элементов минерального питания — Са, Mg, К, Р, S и др. Корни могут получать необходимые компоненты и из твердой фазы почв, разрушая кристаллические решетки первичных и вторичных минералов. Поглощенные химические элементы поступают в живые растительные ткани и принимают участие в физиологических процессах. После того как растения целиком или отдельные его части отмирают, химические элементы вновь возвращаются в почвенную толщу.
Таким образом, в системе растение—почва постоянно осуществляется биологический круговорот веществ, в котором растения выступают инициатором и активным участником. Емкость биокруговорота, т. е. количество вовлекаемых в него веществ, сильно колеблется в различных ландшафтах. Так, фитоценозы хвойных лесов бореального пояса ежегодно вовлекают и возвращают в почву до 100 кг/га минеральных компонентов. В ландшафтах низинных лугов и прерий эта величина может достигать 1000 кг/га и более. И наконец, во влажных тропических лесах, по некоторым данным, растительность отдает почвам в год 5000 кг/га и более минеральных веществ.
Высшие растения влияют на передвижение влаги в почвах. При нагревании надземных частей растений, главным образом листьев, с их поверхности испаряется влага (процесс транспирации). Внутри растений создается всасывающее давление, в результате чего корни поглощают влагу из верхней части почв. Это в свою очередь приводит к тому, что в почвах благодаря появлению градиента сосущей силы возникают восходящие токи влаги — из нижних, более влажных, слоев к верхним, более сухим.
Растения оказывают и другие воздействия на почву. Они затеняют ее поверхность, участвуя в формировании микроклимата. Ослабляют силу ветра непосредственно у земли, препятствуя эрозии и дефляции почв. С корневыми системами растений связано формирование структуры почв, возникновение в ней порозности.
Весьма многообразны почвообразовательные функции микроорганизмов, плотность населения которых в почвах очень велика. Они рассеяны во всей толще почв, но основная их масса приурочена к верхнему корнеобитаемому и богатому отмершими растительными остатками слою. Здесь в приповерхностном (20—25 см) слое почвы общая масса микроорганизмов может достигать 10 т/га и более.
Самая обильная и разнообразная группа почвенных микроорганизмов — бактерии (рис. 1.1, а). В 1 г почвы содержится несколько сотен миллионов особей бактерий. Содержание других групп микроорганизмов (актиномицетов, грибов и водорослей) достигает десятков и сотен тысяч на 1 г почвы (рис. 1.1, б— г).
Численность и активность микроорганизмов в почвах изменяется в значительных пределах в зависимости от климатических условий, характера почвообразующей породы и типа растительности (табл. 1.4).
Таблица 1.4
Количество микроорганизмов в некоторых почвах (по данным прямого счета под микроскопом)
Ландшафтная зона и почвы |
Общее количество, млн/г почвы (по E.H. Мишустину) |
Водоросли, тыс/г почвы (по Э.А. Штина) |
Средняя тайга, подзолы |
300-600 |
5—30 |
Смешанные леса, дерново-подзолистые почвы |
600-1000 |
12-220 |
Умеренно засушливые степи, черноземы |
2000-2500 |
25-120 |
Полупустыни, сероземы, бурые пустынно- степные почвы |
1200-1600 |
95 |
Одна из главнейших функций микроорганизмов в почвах — разложение растительных и животных остатков. В процессе своей жизнедеятельности микроорганизмы выделяют различные ферменты- катализаторы, которые ускоряют превращение отмершего органического вещества в гумусовые кислоты и простые соединения типа Н20, H2S, С02 и др. При участии микроорганизмов в почвах происходит окисление и восстановление соединений железа и марганца, процессы нитрификации и денитрификации, сульфуризации и десульфуризации. Гидролиз и полный распад минералов в почвах идут также под непременным воздействием микроорганизмов, которые выделяют в окружающую среду различные агрессивные органические вещества кислотной и щелочной природы, комплексообразователи и реагенты, обладающие сильными окислительными или восстановительными свойствами
Рис. 1.1. Микроорганизмы в почвах (по Д.М. Новогрудскому): а — бактерии; б — низшие почвенные грибы; в — актиномицеты; г — диатомовые водоросли
ческого вещества в гумусовые кислоты и простые соединения типа Н20, H2S, С02 и др. При участии микроорганизмов в почвах происходит окисление и восстановление соединений железа и марганца, процессы нитрификации и денитрификации, сульфуризации и десульфуризации. Гидролиз и полный распад минералов в почвах идут также под непременным воздействием микроорганизмов, которые выделяют в окружающую среду различные агрессивные органические вещества кислотной и щелочной природы, комплексообразователи и реагенты, обладающие сильными окислительными или восстановительными свойствами.
С другой стороны, микроорганизмы синтезируют разнообразные новые минеральные образования в почвах. Такой синтез осуществляется путем непосредственного захвата микроорганизмами минеральных веществ из среды обитания и построения из этих элементов скелетов, которые после отмирания и минерализации органического вещества остаются в почве в виде особых биогенных минералов — биолитов (например, кремниевых скелетов диатомовых водорослей). Ряд вторичных минералов (гидроксиды железа, марганца и др.) концентрируются в результате жизнедеятельности микроорганизмов в микробных колониях. Это наблюдается у железобактерий и некоторых других специализированных почвенных микроорганизмов.
Важной функцией микроорганизмов в почвах является фиксация атмосферного азота. Микроорганизмы-азотфиксаторы (особенно специализированные бактерии, а также некоторые грибы и сине-зеленые водоросли) способствуют накоплению в почвах одного из главных элементов питания растений — азота.
Животные, населяющие почву, также разносторонне действуют на нее: ускоряют разложение органических остатков, перемешивают и разрыхляют почву, способствуют образованию зоогенной структуры.
В почве обитают многие тысячи видов животных, значительно различающихся по размерам, формам жизнедеятельности и воздействию, оказываемому на почву (рис. 1.2). Они представлены: нано- фауной — простейшими организмами, живущими во влажной среде, микрофауной — мельчайшими насекомыми (ногохвостки, клещи, коловратки), мезофауной (мокрицы, пауки, многоножки, мелкие моллюски) и макрофауной, включающей дождевых червей, крабов, змей, грызунов (рис. 1.3—1.5).
На каждом квадратном метре почвы обитают десятки и сотни дождевых червей, тысячи и миллионы микроскопических беспозвоночных. Число нор грызунов достигает 3—4 тыс. на 1 га.
В цепи внутрипочвенных превращений органических остатков фауна выполняет важную функцию разрушения и измельчения растительной массы и остатков животного вещества. При прохождении через кишечный тракт животных почвенная масса подвергается обработке ферментами, ускоряющими гидролиз и окисление, в ней интенсифицируются органо-минеральные взаимодействия, она обогащается продуктами животного метаболизма и приобретает оструктуренность. Вначале позвоночные, а затем беспозвоночные подготавливают материал для последующей «обработки» микроорганизмами. По типу пищевого потребления почвенная фауна делится на: фитофагов, которые используют в пищу ткани живых растений (нематоды, грызуны), сапрофагов — питаются тканями мертвых расте-
Рис. 1.4. Представители почвенной Рис. 1.5. Хищные почвенные
мезофауны (по Д.А. Криволуцкому): личинки жуков-жужелиц
а — скорпион; б — ложноскорпион; (по Д.А. Криволуцкому) в — мокрица; г — кивсяк;
ний (черви, муравьи, многоножки), некрофагов — поедают трупы животных (жуки, личинки мух), хищников — питаются живыми особями (клещи, скорпионы, простейшие) и копрофагов — специализируются на выбросах других животных (микроартроподы, мухи, некоторые жуки).
Значительны масштабы механической работы почвенных животных. Вследствие изменения термических условий и условий увлажнения, в поисках пищи и для закладки нор многочисленные представители фауны мигрируют в почве, перемешивая ее массу, создавая в ней пустоты различных размеров, участвуя в агрегации органического и минерального материалов. Объем почвенной массы, вертикально перемещаемой, например, грызунами, — сотни кубических метров на 1 га/год. В некоторых почвах дождевые черви выбрасывают ежегодно на поверхность до 100 т/га копрогенного материала. Термиты создают надземные сооружения высотой в несколько метров и подземную сеть ходов на глубину в несколько десятков метров.
Многие свойства почв, отличающие ее от исходной породы, возникают в значительной степени благодаря роющей деятельности почвенной фауны. Так, в почвах значительно ослабляется литогенная (например, аллювиальная) слоистость, изменяется характер распределения каменистых компонентов, улучшаются аэрация и водопроницаемость толщи.