Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
9.3. АДб–13Д1 Юрьев А.А.doc -курсовая.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
54.95 Кб
Скачать

3.1 Продукционные модели

Продукционные модели можно считать наиболее распространенными моделями представления знаний. Продукционная модель — это модель, основанная на правилах, позволяющая представить знание в виде предложений типа: «ЕСЛИ условие, ТО действие». Системы обработки знаний, использующие продукционную модель, получили название «продукционных систем». В состав экспертных систем продукционного типа входят: база правил (знаний), рабочая память и интерпретатор правил (решатель), реализующий определенный механизм логического вывода.

Существуют два типа продукционных систем – с «прямыми» и «обратными» выводами. Прямые выводы реализуют стратегию «от фактов к заключениям». При обратных выводах выдвигаются гипотезы вероятностных заключений, которые могут быть подтверждены или опровергнуты на основании фактов, поступающих в рабочую память. Существуют также системы с двунаправленными выводами.

Основные достоинства систем, основанных на продукционных моделях, связаны с простотой представления знаний и организации логического вывода. К недостаткам таких систем можно отнести следующее: отличие от структур знаний, свойственных человеку; неясность взаимных отношений правил; сложность оценки целостного образа знаний; низкая эффективность обработки знаний.

При разработке небольших систем проявляются в основном положительные стороны продукционных моделей знаний, однако при увеличении объёма знаний более заметными становятся слабые стороны.

3.2 Логические модели

Основная идея при построении логических моделей знаний заключается в следующем — вся информация, необходимая для решения прикладных задач, рассматривается как совокупность фактов и утверждений, которые представляются как формулы в некоторой логике. Знания отображаются совокупностью таких формул, а получение новых знаний сводится к реализации процедур логического вывода.

Основные достоинства логических моделей знаний: в качестве «фундамента» здесь используется классический аппарат математической логики, методы которой достаточно хорошо изучены и формально обоснованы; существуют достаточно эффективные процедуры вывода, в том числе реализованные в языке логического программирования «Пролог»; в базах знаний можно хранить лишь множество аксиом, а все остальные знания получать из них по правилам вывода.

Способ описания предметной области, используемый в логических моделях знаний, приводит к потере некоторых нюансов, свойственных естественному восприятию человека, и поэтому снижает описательную возможность таких моделей. Сложности возникают при описании «многосортных» миров, когда объекты не являются однородными. Так, высказывания: «2 + 2 = 4» и «Москва – столица России» имеют одно и то же значение «истина», но разный смысл. С целью преодоления сложностей и расширения описательных возможностей логических моделей знаний разрабатываются псевдофизические логики, логики, оперирующие с нечеткостями, эмпирическими кванторами, обеспечивающие индуктивные, дедуктивные и традуктивные выводы. Такие расширенные модели, объединяющие возможности логического и лингвистического подходов, принято называть логико-лингвистическими моделями предметной области.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]