Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OIT_OTVET.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
227.15 Кб
Скачать

39. Классификация методов минимизации функций многих переменных. Методы условной оптимизации

Возможны два подхода к решению задачи отыскания минимума функции многих переменных f(x) = f(x1, ..., хn) при отсутствии ограничений на диапазон изменения неизвестных. Первый подход лежит в основе косвенных методов оптимизации и сводит решение задачи оптимизации к решению системы нелинейных уравнений, являющихся следствием условий экстремума функции многих переменных. Как известно, эти условия определяют, что в точке экстремума х* все первые производные функции по независимым переменным равны нулю.

Решение систем нелинейных уравнений - задача весьма сложная и трудоемкая. Вследствие этого на практике используют второй подход к минимизации функций, составляющий основу прямых методов. Суть их состоит в построении последовательности векторов х [0], х [1], …, х [n], таких, что f[0])> f [1])> f [n])>… В качестве начальной точки x[0] может быть выбрана произвольная точка, однако стремятся использовать всю имеющуюся информацию о поведении функции f(x), чтобы точка x[0] располагалась как можно ближе к точке минимума. Переход (итерация) от точки х [k] к точке х [k+1], k = 0, 1, 2, ..., состоит из двух этапов:

1.выбор направления движения из точки х [k]; 2.определение шага вдоль этого направления.

Методы построения таких последовательностей часто называют методами спуска, так как осуществляется переход от больших значений функций к меньшим.

Методы условной оптимизации

1. Линейное программирование

Под линейным программированием понимается раздел теории экстремальных задач, в котором изучаются задач и минимизации (или максимизации) линейных функций на множествах, задаваемых системами линейных равенств и неравенств. В общем случае задача линейного программирования формулируется следующим образом. Найти вектор х* , определяющий максимум (минимум) линейной форме при определенных ограничениях.

-2.Транспортная задача линейного программирования

Транспортная задача является частным типом задачи линейного программирования и формулируется следующим образом. Имеется m пунктов отправления (или пунктов производства) Аi …, Аm, в которых сосредоточены запасы однородных продуктов в количестве a1, ..., аm единиц. Имеется n пунктов назначения (или пунктов потребления) В1, ..., Вm, потребность которых в указанных продуктах составляет b1, ..., bn единиц. Известны также транспортные расходы Сij, связанные с перевозкой единицы продукта из пункта.Ai в пункт Вj, i 1, …, m; j 1, ..., n.

- Метод потенциалов

Метод потенциалов является модификацией симплекс-метода решения задачи линейного программирования применительно к транспортной задаче. Он позволяет, отправляясь от некоторого допустимого решения, получить оптимальное решение за конечное число итераций.

3.Прямые методы условной оптимизации

-Метод проекции градиента

Рассмотрим данный метод применительно к задаче оптимизации с ограничениями-неравенствами. В качестве начальной выбирается некоторая точка допустимой области G.

- Комплексный метод Бокса

Этот метод представляет модификацию метода деформируемого многогранника и предназначен для решения задачи нелинейного программирования с ограничениями-неравенствами. Для минимизации функции n переменных f(x) в n-мерном пространстве строят многогранники, содержащие q п+1 вершин. Эти многогранники называют комплексами, что и определило наименование метода.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]