
- •Эконометрика и экономико-математические методы и модели Учебно-методический комплекс
- •Состав и структура умк
- •Эконометрика
- •И экономико-математические
- •Методы и модели
- •Учебная программа для специальностей:
- •Составила: Мокеева о.А., к. Ф.-м. Н., доцент
- •Учебная программа составлена на основе учебной программы «Эконометрика и экономико-математические методы и модели», утвержденной 31 августа 2010 г., регистрационный номер уд-046-10/баз.
- •Заведующий кафедрой
- •Пояснительная записка
- •Примерный тематический план
- •Содержание учебного материала
- •Тема 1. Теоретические основы математического моделирования
- •Тема 2. Модели парной регрессии
- •Информационно-методическая часть Основная литература Учебники
- •Дополнительная литература Учебники
- •Наглядные и методические пособия
- •Тема 1 теоретические основы экономико-математического моделирования
- •1. Понятие о модели и моделировании
- •2. Классификация моделей
- •3. Экономико-математическая модель
- •4. Этапы экономико-математического моделирования
- •5. Принципы построения экономико-математических моделей
- •6. Общая характеристика экономико-математических методов
- •7. Эконометрика как наука
- •8. Эконометрика и другие науки
- •9. Эконометрические модели и их типы
- •10. Этапы эконометрического моделирования
- •11. Пример эконометрического исследования
- •12. Эконометрическое моделирование
- •Вопросы для самоконтроля
- •Тема 2 модели парной регрессии
- •1. Корреляционный и регрессионный анализы
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Оценка тесноты связи между количественными переменными
- •5. Проверка общего качества уравнения регрессии
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Парная линейная регрессия и корреляция»
- •1. Постановочный этап
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Верификация модели
- •5. Прогнозирование
- •Сурс спецификация и параметризация парной нелинейной регрессионной модели
- •1. Количество часов сурс на тему – 2.
- •Теоретические вопросы (определяет преподаватель)
- •Практические задания (вариант определяет преподаватель)
- •Методические указания
- •Литература
- •Вопросы для самоконтроля
- •Тема 3 модели множественной регрессии
- •1. Постановочный этап
- •3. Параметризация модели
- •4. Верификация модели
- •4.1. Статистическая значимость параметров регрессии
- •4.2. Проверка общего качества модели множественной регрессии
- •4.3. Предпосылки мнк
- •5. Прогнозирование на основе регрессионных моделей
- •6. Фиктивные переменные
- •7. Введение фиктивных переменных в модель
- •8. Тест Чоу
- •9. Фиктивные переменные и сезонность
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Множественная линейная регрессия и корреляция»
- •Порядок выполнения работы
- •Вопросы для самоконтроля
- •Тема 4 эконометрический анализ при нарушении классических модельных предположений
- •1. Проблема гетероскедастичности
- •2. Автокорреляция остатков регрессионной модели
- •3. Мультиколлинеарность факторов
- •Эконометрический анализ модельных предположений для множественной линейной регрессионной модели
- •1. Количество часов сурс на тему – 2.
- •Теоретические вопросы (определяет преподаватель)
- •Отчет по лабораторной и самостоятельной управляемой работе «Множественная регрессия и корреляция» студента _____________________________________ гр. ______
- •1. Постановочный этап.
- •4. Верификация модели.
- •Литература
- •Вопросы для самоконтроля
- •Тема 5 моделирование одномерных временных рядов
- •1. Динамические эконометрические модели
- •2. Компоненты временного ряда
- •3. Выравнивание временного ряда
- •4. Общая схема моделирования временного ряда
- •5. Автокорреляция остатков временного ряда
- •6. Анализ структурной стабильности тенденции
- •Примеры решения заданий
- •1.2Подобрать линию тренда, которая лучше всего описывает фактические данные и на ее основе сделать прогноз на 3 недели вперед. Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Анализ структуры временного ряда»
- •Порядок выполнения работы
- •2. Спецификация, параметризация и верификация модели.
- •3. Прогнозирование
- •Вопросы для самоконтроля
- •Тема 6 системы одновременных уравнений
- •1. Системы уравнений, используемые в эконометрике
- •2. Структурная и приведенная формы моделей
- •3. Проблема идентифицируемости модели
- •4. Методы оценивания параметров структурной модели
- •5. Практика применения систем одновременных уравнений в макроэкономическом анализе
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 7 модели сетевого планирования
- •1.2.11. Области применения моделей сетевого планирования
- •2. Основные понятия и элементы сетевого графика
- •3. Правила построения сетевого графика
- •4. Временные параметры сетевого графика
- •5. Линейный график Ганта
- •6. Задачи оптимизации сетевого графика
- •7. Модели сетевого планирования в условиях неопределенности
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 8 модели межотраслевого баланса
- •1. Понятие балансовой модели
- •2. Схема межотраслевого баланса
- •3. Варианты расчетов по балансовой модели
- •4. Модель отраслевого баланса в условиях ограничений на используемые внешние ресурсы
- •5. Из истории метода межотраслевого баланса
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 9 модели теории игр
- •1. Понятие игры, виды игр
- •2. Принцип минимакса
- •3. Упрощение матричных игр
- •1.2.24. Решение матричных игр без седловых точек
- •1.35. Игры с природой
- •1.46. Критерий Байеса
- •1.57. Критерий Лапласа
- •1.68. Максиминный критерий Вальда
- •1.79. Критерий Сэвиджа (минимаксного риска)
- •1.810. Критерий обобщенного максимума Гурвица
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Решение:
- •1.10Критерий Вальда
- •1.11Критерий Сэвиджа
- •1.12Критерий Гурвица
- •1.13Критерий Байеса
- •1.15Критерий Лапласа
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 10 модели массового обслуживания
- •1. Основные понятия систем массового обслуживания
- •2. Классификации систем массового обслуживания
- •3. Простейшие системы массового обслуживания
- •4. Примеры
- •5. Основные показатели эффективности системы массового обслуживания
- •5.1. Одноканальная система массового обслуживания с отказами
- •5.2. Многоканальная система массового обслуживания с отказами
- •5.3. Одноканальная система массового обслуживания с ожиданием и ограничением на длину очереди
- •5.4. Многоканальная система массового обслуживания с ожиданием и ограничением на длину очереди
- •5.5. Одноканальная система массового обслуживания с ожиданием и неограниченной очередью
- •3.3.6. Многоканальная система массового обслуживания с ожиданием и неограниченной очередью
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 11 модели управления товарными запасами
- •1. Основные теоретические сведения
- •2. Понятие о системах управления запасами
- •3. Простейшая модель оптимального размера партии поставки
- •4. Модель с учетом неудовлетворенных требований
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Информационно-методическая часть Основная литература Учебники
- •Дополнительная литература Учебники
- •Наглядные и методические пособия
Решение:
Параметры работы склада следующие: М = 6200 ед./год; K = = 1296 усл. ед.; h = 496 усл. ед./год; d = 3600 усл. ед./год.
Оптимальная партия поставки равна
=
192 ед.
Максимальная величина задолженного спроса высчитывается по формуле и равна
=
23 ед.
Интервал возобновления поставки равен
=
0,0309 год или 0,0309
365 = 11 сут.
Среднесуточные издержки в оптимальном режиме равны
Zопт=
=
83700.
Задания для самостоятельной работы
Задание 1. Компания поставляет заказчику принтеры. Средняя потребность в них составляет 49 шт. в год. Стоимость размещения одного заказа – 30 усл. ед., издержки содержания составляют 15 усл. ед. в год.
Определить оптимальную партию поставки, период пополнения заказа, годовые затраты.
Задание 2. Годовая потребность фирмы в пиломатериалах составляет 4000 м3, затраты на хранение 1 м3 в год – 4 усл. ед. Затраты на подготовительные операции, не зависящие от величины поставляемой партии и связанные с каждой поставкой, равны 80 усл. ед.
Найти оптимальную партию поставки, период пополнения заказа, годовые затраты. Сравнить полученные затраты с затратами, которые возникают в случае отклонений от оптимальной партии в любом направлении в два раза.
Задание 3. Потребность сборочного цеха в заготовках определенного типа составляет 32 тыс. шт. в год. Издержки размещения заказа – 50 усл. ед., издержки содержания одной заготовки в год равны 5 усл. ед.
Найти оптимальную партию поставки, период пополнения заказа, годовые затраты. Сравнить полученные затраты с затратами в случае увеличения издержек на размещение заказа до 70 усл. ед. и уменьшении издержек содержания до 3 усл. ед.
Задание 4. На склад поступают материалы, годовой объем поставок которых равен 810 шт. Издержки завоза одной партии составляют 40 усл. ед., издержки хранения единицы запаса в сутки – 0,2 усл. ед. Неудовлетворенные требования берутся на учет. Удельные издержки дефицита составляют 0,3 усл. ед. за нехватку единицы продукции в течение дня.
Найти оптимальную партию поставки, максимальную величину задолженного спроса, интервал возобновления поставки и годовые потери функционирования системы.
Задание 5. Годовая потребность магазина в телевизорах – 900 шт. Затраты, связанные с содержанием одного телевизора, составляют 40 усл. ед. в год, а затраты, связанные с оформление каждого заказа, – 500 усл. ед. Если в момент обращения покупателя в магазин нет нужного товара, то требование ставится на учет и удовлетворяется по мере поступления. Издержки дефицита, включающие затраты, связанные с учетом неудовлетворенных требований, составляют в год 40 усл. ед.
Определить оптимальную партию поставки, оптимальный интервал возобновления заказа, период дефицита и среднегодовые издержки.
Задание 6. Магазин радиотоваров реализует музыкальные центры. Средняя потребность в них составляет 3 шт. в месяц. Стоимость организации заказа – 28 усл. ед. Содержание его в течение месяца обходится в 14 усл. ед. Издержки дефицита составляют в месяц 20 усл. ед.
Определить оптимальную партию поставки, оптимальный интервал возобновления заказа, период работы без дефицита и среднегодовые издержки.
Задание 7. Магазин ежедневно продает 10 телевизоров. Накладные расходы на поставку партии телевизоров в магазин оцениваются в 30 усл. ед. Стоимость хранения одного телевизора на складе магазина составляет 0,85 усл. ед. в день. При перевозке телевизоры можно устанавливать друг на друга не более чем три штуки.
Определить оптимальный объем партии телевизоров, оптимальные среднесуточные издержки на хранение и пополнение запасов телевизоров на складе. Подобрать партию поставки телевизоров, обеспечивающую наименьшее отклонение от оптимального режима.
Задание 8. В магазине спрос покупателей на сок составляет 25 упаковок в день. Затраты на заказ и доставку одной партии составляют 3000 усл. ед. Среднесуточные издержки хранения одной упаковки равны 0,4 усл. ед.
Определить оптимальную партию поставки, период поставки и общие среднесуточные издержки склада на доставку и хранение сока в оптимальном режиме. Подобрать партию поставки сока, учитывая, что магазину выгодно возить число упаковок кратное 100.