
- •Эконометрика и экономико-математические методы и модели Учебно-методический комплекс
- •Состав и структура умк
- •Эконометрика
- •И экономико-математические
- •Методы и модели
- •Учебная программа для специальностей:
- •Составила: Мокеева о.А., к. Ф.-м. Н., доцент
- •Учебная программа составлена на основе учебной программы «Эконометрика и экономико-математические методы и модели», утвержденной 31 августа 2010 г., регистрационный номер уд-046-10/баз.
- •Заведующий кафедрой
- •Пояснительная записка
- •Примерный тематический план
- •Содержание учебного материала
- •Тема 1. Теоретические основы математического моделирования
- •Тема 2. Модели парной регрессии
- •Информационно-методическая часть Основная литература Учебники
- •Дополнительная литература Учебники
- •Наглядные и методические пособия
- •Тема 1 теоретические основы экономико-математического моделирования
- •1. Понятие о модели и моделировании
- •2. Классификация моделей
- •3. Экономико-математическая модель
- •4. Этапы экономико-математического моделирования
- •5. Принципы построения экономико-математических моделей
- •6. Общая характеристика экономико-математических методов
- •7. Эконометрика как наука
- •8. Эконометрика и другие науки
- •9. Эконометрические модели и их типы
- •10. Этапы эконометрического моделирования
- •11. Пример эконометрического исследования
- •12. Эконометрическое моделирование
- •Вопросы для самоконтроля
- •Тема 2 модели парной регрессии
- •1. Корреляционный и регрессионный анализы
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Оценка тесноты связи между количественными переменными
- •5. Проверка общего качества уравнения регрессии
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Парная линейная регрессия и корреляция»
- •1. Постановочный этап
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Верификация модели
- •5. Прогнозирование
- •Сурс спецификация и параметризация парной нелинейной регрессионной модели
- •1. Количество часов сурс на тему – 2.
- •Теоретические вопросы (определяет преподаватель)
- •Практические задания (вариант определяет преподаватель)
- •Методические указания
- •Литература
- •Вопросы для самоконтроля
- •Тема 3 модели множественной регрессии
- •1. Постановочный этап
- •3. Параметризация модели
- •4. Верификация модели
- •4.1. Статистическая значимость параметров регрессии
- •4.2. Проверка общего качества модели множественной регрессии
- •4.3. Предпосылки мнк
- •5. Прогнозирование на основе регрессионных моделей
- •6. Фиктивные переменные
- •7. Введение фиктивных переменных в модель
- •8. Тест Чоу
- •9. Фиктивные переменные и сезонность
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Множественная линейная регрессия и корреляция»
- •Порядок выполнения работы
- •Вопросы для самоконтроля
- •Тема 4 эконометрический анализ при нарушении классических модельных предположений
- •1. Проблема гетероскедастичности
- •2. Автокорреляция остатков регрессионной модели
- •3. Мультиколлинеарность факторов
- •Эконометрический анализ модельных предположений для множественной линейной регрессионной модели
- •1. Количество часов сурс на тему – 2.
- •Теоретические вопросы (определяет преподаватель)
- •Отчет по лабораторной и самостоятельной управляемой работе «Множественная регрессия и корреляция» студента _____________________________________ гр. ______
- •1. Постановочный этап.
- •4. Верификация модели.
- •Литература
- •Вопросы для самоконтроля
- •Тема 5 моделирование одномерных временных рядов
- •1. Динамические эконометрические модели
- •2. Компоненты временного ряда
- •3. Выравнивание временного ряда
- •4. Общая схема моделирования временного ряда
- •5. Автокорреляция остатков временного ряда
- •6. Анализ структурной стабильности тенденции
- •Примеры решения заданий
- •1.2Подобрать линию тренда, которая лучше всего описывает фактические данные и на ее основе сделать прогноз на 3 недели вперед. Решение:
- •Задания для самостоятельной работы
- •Лабораторная работа «Анализ структуры временного ряда»
- •Порядок выполнения работы
- •2. Спецификация, параметризация и верификация модели.
- •3. Прогнозирование
- •Вопросы для самоконтроля
- •Тема 6 системы одновременных уравнений
- •1. Системы уравнений, используемые в эконометрике
- •2. Структурная и приведенная формы моделей
- •3. Проблема идентифицируемости модели
- •4. Методы оценивания параметров структурной модели
- •5. Практика применения систем одновременных уравнений в макроэкономическом анализе
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 7 модели сетевого планирования
- •1.2.11. Области применения моделей сетевого планирования
- •2. Основные понятия и элементы сетевого графика
- •3. Правила построения сетевого графика
- •4. Временные параметры сетевого графика
- •5. Линейный график Ганта
- •6. Задачи оптимизации сетевого графика
- •7. Модели сетевого планирования в условиях неопределенности
- •Примеры решения заданий
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 8 модели межотраслевого баланса
- •1. Понятие балансовой модели
- •2. Схема межотраслевого баланса
- •3. Варианты расчетов по балансовой модели
- •4. Модель отраслевого баланса в условиях ограничений на используемые внешние ресурсы
- •5. Из истории метода межотраслевого баланса
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 9 модели теории игр
- •1. Понятие игры, виды игр
- •2. Принцип минимакса
- •3. Упрощение матричных игр
- •1.2.24. Решение матричных игр без седловых точек
- •1.35. Игры с природой
- •1.46. Критерий Байеса
- •1.57. Критерий Лапласа
- •1.68. Максиминный критерий Вальда
- •1.79. Критерий Сэвиджа (минимаксного риска)
- •1.810. Критерий обобщенного максимума Гурвица
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Решение:
- •1.10Критерий Вальда
- •1.11Критерий Сэвиджа
- •1.12Критерий Гурвица
- •1.13Критерий Байеса
- •1.15Критерий Лапласа
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 10 модели массового обслуживания
- •1. Основные понятия систем массового обслуживания
- •2. Классификации систем массового обслуживания
- •3. Простейшие системы массового обслуживания
- •4. Примеры
- •5. Основные показатели эффективности системы массового обслуживания
- •5.1. Одноканальная система массового обслуживания с отказами
- •5.2. Многоканальная система массового обслуживания с отказами
- •5.3. Одноканальная система массового обслуживания с ожиданием и ограничением на длину очереди
- •5.4. Многоканальная система массового обслуживания с ожиданием и ограничением на длину очереди
- •5.5. Одноканальная система массового обслуживания с ожиданием и неограниченной очередью
- •3.3.6. Многоканальная система массового обслуживания с ожиданием и неограниченной очередью
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Тема 11 модели управления товарными запасами
- •1. Основные теоретические сведения
- •2. Понятие о системах управления запасами
- •3. Простейшая модель оптимального размера партии поставки
- •4. Модель с учетом неудовлетворенных требований
- •Примеры решения заданий
- •Решение:
- •Решение:
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Информационно-методическая часть Основная литература Учебники
- •Дополнительная литература Учебники
- •Наглядные и методические пособия
10. Этапы эконометрического моделирования
Выделяют следующие этапы решения эконометрической задачи.
Постановочный этап. Он предполагает:
а) определение целей и задач исследования;
б) выделение факторов и показателей, определяющих изучаемые экономические процессы;
в) установление на базе экономической теории роли выбранных показателей.
Этап спецификации. На этом этапе осуществляется выбор формулы связи между переменными, обозначающими выделенные факторы.
Этап параметризации. На этом этапе решается задача оценки значений параметров выбранной функции связи, то есть задача подбора коэффициентов функции таким образом, чтобы эта функция в некотором смысле наилучшим образом отражала зависимость между объясняемым фактором и независимыми переменными.
Этап верификации. Он предполагает проверку адекватности модели, то есть проверку того, в какой степени построенная модель соответствует реальному экономическому явлению или процессу. Кроме того, здесь выясняется, насколько удачно решены проблемы спецификации и параметризации, совершенствуется форма модели, уточняется состав объясняющих переменных, устанавливается точность расчетов по данной модели, общее качество уравнения, статистическая значимость найденных параметров.
11. Пример эконометрического исследования
Предположим, что некоторая риэлтерская фирма желает составить для себя точное представление об ожидаемой цене на квартиры.
Первый шаг такого исследования состоит в том, чтобы установить факторы, определяющие цену p, которая выступает в данном примере в качестве результирующего фактора и является зависимой (или, иначе, объясняемой) переменной. Конечно, значение цены квартиры зависит практически от бесконечного количества факторов. К ним относятся, например, площадь квартиры, количество ее комнат, площадь кухни, совмещенность или несовмещенность санузла, этажность дома, номер этажа, на котором расположена квартира, удаленность квартиры от центра города, наличие квартир на вторичном рынке жилья и новых квартир и многие-многие другие. Выберем лишь те, которые оказывают наиболее существенное влияние на цену p. Отнесем к ним площадь квартиры s и удаленность ее от центра города l. Эти величины называются независимыми (или объясняющими) факторами (их еще называют регрессорами). Доля влияния остальных факторов незначительна, их игнорирование в среднем не приведет к существенным отклонениям цены p. Поэтому все они рассматриваются как одна случайная переменная ε (она называется возмущением или ошибкой). В результате зависимость переменной p разбивается на две части – зависимость объясненную (связанную с переменными s и l) и случайную ε.
Отметим, что фирма располагает данными по n квартирам города, причем для каждой из них известны площадь s1, s2, …, sn, удаленность от центра города l1, l2, …, ln и цена p1, p2, …, pn .
Второй шаг исследования состоит в построении эконометрической модели. Речь идет о том, чтобы на основании имеющихся статистических данных определить объясненную часть переменной p, рассматривая случайную составляющую как случайную величину, подобрать функцию f(s, l) так, чтобы она наиболее точно соответствовала статистическим данным. При такой постановке задачи эконометрическая модель имеет вид, схематически изображенный на рисунке 1.
Наблюдаемое значение цены p |
= |
Объясненная часть цены f(s, l) |
+ |
Случайная составляющая часть цены ε |
Рис. 1. Эконометрическая модель задачи
Очевидно, что стоимость квартиры тем больше, чем больше ее площадь, и тем меньше, чем дальше она расположена от центра города. Это означает, что между переменными p и s существует прямая зависимость, а между p и l – обратная. Поэтому в качестве общей формулы можно взять, например, формулу
.
(1)
Тогда эконометрическая модель задается уравнением
,
(2)
где p – цена квартиры; s – площадь квартиры; l – расстояние до центра города.
После
спецификации модели решение задачи
вступает в этап параметризации. На этом
этапе необходимо подобрать параметры
a
и b
таким образом,
чтобы при подстановке в формулу (1)
значений si
,li
получались
значения, расположенные в среднем как
можно ближе к значениям pi
(i
= 1, 2, …, n).
Отметим, что успех математического моделирования во многом зависит от спецификации модели. Поэтому эконометрист, кроме модели (2), построит и другие, а потом из них выберет наилучшую.
Поясним еще один момент, касающийся практических целей эконометрического моделирования. Предположим, что параметризованная на основании (2) эконометрическая модель имеет вид:
.
(3)
Тогда, опираясь на модель (3), в частности, можно:
а)
спрогнозировать цену квартиры (например,
квартира площадью в 40 м2,
расположенная в двух км от центра города,
предположительно будет стоить
денежных единиц);
б) оценить целесообразность (существенность) факторов s и l;
в) выявить влияние на цену квартиры каждого фактора;
г) получить статистические доказательства надежности выводов а) – в).
Теперь риэлтор может легко определить ожидаемую цену любой квартиры, даже если ее аналогов нет в базе данных фирмы. В этом и состоит главное практическое приложение полученного результата.